Naming and Bisecting Angles

You can name an angle by its vertex, such as $\angle A$, or by a point on each ray and the vertex, such as $\angle BAC$ or $\angle CAB$.

When a point is the vertex of more than one angle, you cannot use the vertex alone to name the angles, as shown in the following example.

Example 1 Name the included angle between each given pair of sides.

- **a.** \overline{FJ} and \overline{FH}
 - $ightharpoonup \angle JFH \text{ or } \angle HFJ$
- **b.** \overline{JH} and \overline{GH}
 - \nearrow $\angle JHG$ or $\angle GHJ$

An **angle bisector** is a ray that divides an angle into two angles that are congruent. In the figure, \overrightarrow{YW} bisects $\angle XYZ$, so $\angle XYW \cong \angle ZYW$.

Example 2 \overrightarrow{BD} bisects $\angle ABC$. Find $m \angle ABC$.

First write and solve an equation. Use the fact that $m \angle ABD = m \angle CBD$.

$$m\angle ABD = m\angle CBD$$

Write the equation.

$$-10x + 25 = 3x + 77$$

Substitute.

$$-4 = x$$

Solve for *x*.

Then evaluate the expression for $m \angle ABD$ when x = -4 to obtain $m \angle ABD = 65^{\circ}$. By the Angle Addition Postulate and the definition of angle bisector, $m \angle ABC = m \angle ABD + m \angle CBD = 65^{\circ} + 65^{\circ} = 130^{\circ}$.

So, the measure of $\angle ABC$ is 130°.

Practice

Check your answers at BigIdeasMath.com.

In Exercises 1–4, use the figure to name the included angle between the given pair of sides.

- **1.** \overline{ST} and \overline{UT} $\angle T$, $\angle STU$, or $\angle UTS$
- **2.** \overline{SU} and \overline{VU} $\angle SUV$ or $\angle VUS$
- **3.** \overline{UR} and \overline{UT} $\angle RUT$ or $\angle TUR$
- **4.** \overline{RV} and \overline{RS} $\angle SRV$ or $\angle VRS$

- **5.** \overrightarrow{QS} bisects $\angle PQR$ such that $m\angle PQS = (5x + 9)^{\circ}$ and $m\angle RQS = (9x 3)^{\circ}$. Find the value of x and $m\angle PQR$. x = 3, $m\angle PQR = 48^{\circ}$
- **6.** \overrightarrow{KM} bisects $\angle JKL$ such that $m\angle JKM = (6x + 33)^\circ$ and $m\angle LKM = (13x 2)^\circ$. Find the value of x and $m\angle JKL$. $x = 5, m\angle JKL = 126^\circ$