7. (-5, 6), (-7, -2) **2** $\sqrt{17}$

The Pythagorean Theorem

In a right triangle, the **hypotenuse** is the side opposite the right angle. The **legs** are the two sides that form the right angle.

The **Pythagorean Theorem** states that in any right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

 $a^2 + b^2 = c^2$

 $a^2 + 15^2 = 17^2$

 $a^2 + 225 = 289$

 $a^2 = 64$

Evaluate powers.

Subtract 225 from each side.

Example 1 Find the missing length of the triangle.

You can use the Pythagorean Theorem to develop the *Distance Formula* You can use the **Distance Formula** to find the distance *d* between any two points (x_1, y_1) and (x_2, y_2) in a coordinate plane.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example 2 Find the distance between the two points.

17 yd

15 vd

Let
$$(x_1, y_1) = (3, 6)$$
 and $(x_2, y_2) = (-2, 4)$.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-2 - 3)^2 + (4 - 6)^2}$$

$$= \sqrt{25 + 4}$$

$$= \sqrt{29}$$

b. (0, 5), (4, -1) Let $(x_1, y_1) = (0, 5)$ and $(x_2, y_2) = (4, -1)$. $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(4 - 0)^2 + (-1 - 5)^2}$ $= \sqrt{16 + 36}$ $= 2\sqrt{13}$

Practice

4. (0, 0), (4, 3) **5**

1.

Find the missing length of the triangle.

Find the distance between the two points.

5. (0, -7), (5, 5) **13**

8. (-1, -3), (9, 0) $\sqrt{109}$

Check your answers at BigIdeasMath.com.