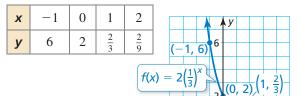

Exponential Functions

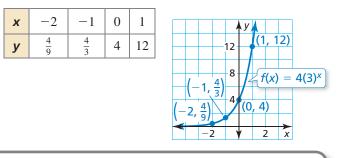
Graphing Exponential Functions

An **exponential function** is a nonlinear function of the form $y = ab^x$, where $a \neq 0, b \neq 1$, and b > 0.

- When a > 0 and b > 1, the function is an exponential growth function.
- When a > 0 and 0 < b < 1, the function is an exponential decay function.


The graphs of the parent exponential functions $y = b^x$ are shown.

Example 1 Tell whether each function represents *exponential growth* or *exponential decay*. Then graph the function.


a.
$$f(x) = 2\left(\frac{1}{3}\right)^x$$

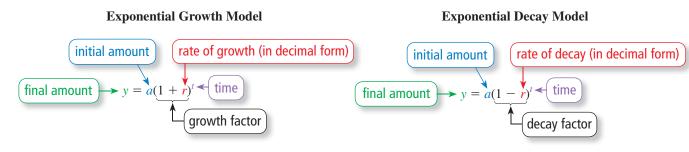
Because a = 2 is positive and $b = \frac{1}{3}$ is greater than 0 and less than 1, the function is an exponential decay function. Use a table to graph the function.

b. $f(x) = 4(3)^x$

Because a = 4 is positive and b = 3 is greater than 1, the function is an exponential growth function. Use a table to graph the function.

Practice

Check your answers at BigIdeasMath.com.


Tell whether the function represents *exponential growth* or *exponential decay*. Then graph the function.

1. $f(x) = \left(\frac{1}{4}\right)^x$ **2.** $f(x) = \left(\frac{4}{3}\right)^x$ **3.** $f(x) = 0.5(4)^x$ **4.** $f(x) = 3(0.75)^x$ **5.** $f(x) = 2(0.8)^x$ **6.** $f(x) = 5(2)^x$

Exponential Functions

Rewriting Exponential Functions

Exponential growth occurs when a quantity increases by the same factor over equal intervals of time, whereas **exponential decay** occurs when a quantity decreases by the same factor over equal intervals of time.

Example 1 Rewrite the function $y = 120(1.25)^{t/12}$ to determine whether it represents *exponential growth* or *exponential decay*. Then find the percent rate of change.

$y = 120(1.25)^{t/12}$	Write the function.
$= 120[(1.25)^{1/12}]^t$	Power of a Power Property
$\approx 120(1.02)^t$	Evaluate the power.
$= 120(1 + 0.02)^t$	Rewrite in the form $y = a(1 + r)^t$.

So, the function represents exponential growth and the growth rate is about 0.02, or 2%.

Practice

Check your answers at BigIdeasMath.com.

Rewrite the function to determine whether it represents *exponential growth* or *exponential decay*. Then find the percent rate of change.

1. $y = 80(0.85)^{2t}$	2. $y = 67(1.13)^{t/4}$
3. $y = 5\left(\frac{3}{2}\right)^{-8t}$	4. $y = 17 \left(\frac{2}{5}\right)^{0.65t}$
5. $y = 4(0.5)^{t/88}$	6. $y = 31(1.02)^{4t}$
7. $y = 9(1.12)^{0.3t}$	8. $y = 750(0.88)^{t/3}$
9. $y = (0.64)^{5t}$	10. $y = 6(0.82)^{-0.25t}$