Name \qquad
\qquad

Exponential Functions

Graphing Exponential Functions

An exponential function is a nonlinear function of the form $y=a b^{x}$, where $a \neq 0, b \neq 1$, and $b>0$.

- When $a>0$ and $b>1$, the function is an exponential growth function.
- When $a>0$ and $0<b<1$, the function is an exponential decay function.

The graphs of the parent exponential functions $y=b^{x}$ are shown.

Example 1 Tell whether each function represents exponential growth or exponential decay. Then graph the function.
a. $f(x)=2\left(\frac{1}{3}\right)^{x}$

Because $a=2$ is positive and $b=\frac{1}{3}$ is greater than 0 and less than 1 , the function is an exponential decay function. Use a table to graph the function.

x	-1	0	1	2
y	6	2	$\frac{2}{3}$	$\frac{2}{9}$

b. $f(x)=4(3)^{x}$

Because $a=4$ is positive and $b=3$ is greater than 1 , the function is an exponential growth function. Use a table to graph the function.

\boldsymbol{x}	-2	-1	0	1
\boldsymbol{y}	$\frac{4}{9}$	$\frac{4}{3}$	4	12

Practice

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

1. $f(x)=\left(\frac{1}{4}\right)^{x}$
2. $f(x)=\left(\frac{4}{3}\right)^{x}$
3. $f(x)=0.5(4)^{x}$
4. $f(x)=3(0.75)^{x}$
5. $f(x)=2(0.8)^{x}$
6. $f(x)=5(2)^{x}$
\qquad Date \qquad

Exponential Functions

Rewriting Exponential Functions

Exponential growth occurs when a quantity increases by the same factor over equal intervals of time, whereas exponential decay occurs when a quantity decreases by the same factor over equal intervals of time.

Example 1 Rewrite the function $y=120(1.25)^{t / 12}$ to determine whether it represents exponential growth or exponential decay. Then find the percent rate of change.

$$
\begin{aligned}
y & =120(1.25)^{t / 12} & & \text { Write the function. } \\
& =120\left[(1.25)^{1 / 12}\right]^{t} & & \text { Power of a Power Property } \\
& \approx 120(1.02)^{t} & & \text { Evaluate the power. } \\
& =120(1+0.02)^{t} & & \text { Rewrite in the form } y=a(1+r)^{t} .
\end{aligned}
$$

So, the function represents exponential growth and the growth rate is about 0.02 , or 2%.

Practice

Rewrite the function to determine whether it represents exponential growth or exponential decay. Then find the percent rate of change.

1. $y=80(0.85)^{2 t}$
2. $y=67(1.13)^{t / 4}$
3. $y=5\left(\frac{3}{2}\right)^{-8 t}$
4. $y=17\left(\frac{2}{5}\right)^{0.65 t}$
5. $y=4(0.5)^{t / 88}$
6. $y=31(1.02)^{4 t}$
7. $y=9(1.12)^{0.3 t}$
8. $y=750(0.88)^{t / 3}$
9. $y=(0.64)^{5 t}$
10. $y=6(0.82)^{-0.25 t}$
