Name

Focus of a Parabola

A parabola can be defined as the set of all points (x, y) in a plane that are equidistant from a fixed point called the focus and a fixed line called the directrix.

The standard form of the equation of a parabola with vertex at (h, k) is as follows.

Equation	Focus	Directrix	Axis of Symmetry	Behavior
$y=\frac{1}{4 p}(x-h)^{2}+k$	$(h, k+p)$	$y=k-p$	Vertical $x=h$	Opens up when $p>0$ Opens down when $p<0$
$x=\frac{1}{4 p}(y-k)^{2}+h$	$(h+p, k)$	$x=h-p$	Horizontal $y=k$	Opens right when $p>0$ Opens left when $p<0$

Example 1 Identify the vertex, focus, directrix, and axis of symmetry of $x=\frac{1}{8}(y-1)^{2}+4$.

Then graph the equation.

The equation has the form $x=\frac{1}{4 p}(y-k)^{2}+h$, where $p=2, h=4$, and $k=1$.
The vertex is (h, k), or $(4,1)$. The focus is $(h+p, k)$, or $(6,1)$. The directrix is $x=h-p$, or $x=2$. The axis of symmetry is $y=k$, or $y=1$. Use a table of values to graph the equation. Notice that it is easier to substitute y-values and solve for x.

\boldsymbol{y}	-2	-1	0	1	2	3	4
\boldsymbol{x}	5.125	4.5	4.125	4	4.125	4.5	5.125

Practice

Identify the vertex, focus, directrix, and axis of symmetry of the parabola. Then graph the equation.

1. $y=-\frac{1}{24}(x+6)^{2}-4$
vertex: $(-6,-4)$, focus: $(-6,-10)$,
directrix: $y=2$, axis of symmetry: $x=-6$;
2. $x=-\frac{1}{4}(y+5)^{2}-1$
vertex: $(-1,-5)$, focus: $(-2,-5)$,
directrix: $x=0$, axis of symmetry: $y=-5$;
3. $y=\frac{1}{6} x^{2}-3$
vertex: $(0,-3)$, focus: $(0,-1.5)$,
directrix: $y=-4.5$, axis of symmetry: $x=0$;
4. $x=\frac{1}{4}(y-2)^{2}+2$
vertex: $(2,2)$, focus: $(3,2)$,
directrix: $x=1$, axis of symmetry: $y=2$;
5.

2.

3.

4.

