Name

Key Concept and Vocabulary

Product of Powers Property:

 $a^m \cdot a^n = a^{m+n}$

Power of a Power Property

$$(a^m)^n = a^{mn}$$

Power of Quotient Property:

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^{m'}}$$
 where $b \neq 0$

Zero Exponents

 $a^0 = 1$, where $a \neq 0$

Skill Examples

- 1. $x^2 \cdot x^4 = x^{2+4} = x^6$
- **2.** $(w^5)^3 = w^{5 \cdot 3} = w^{15}$
- **3.** $\frac{y^6}{y^6} = y^{6-6} = y^0 = 1$
- **4.** $\left(\frac{c}{2}\right)^3 = \frac{c^3}{2^3} = \frac{c^3}{8}$
- **5.** $4g^{-3} = \frac{4}{\sigma^3}$

Quotient of Powers Property:

$$\frac{a^m}{a^n} = a^{m-n}$$
, where $a \neq 0$

Power of a Product Property

$$(ab)^m = a^m b^m$$

Negative Exponents:

$$a^{-n} = \frac{1}{a^{n'}}$$
 where $a \neq 0$

Exponents

 $2x^2$

Application Example

6. Write the area of the circle as a monomial.

Area = πr^2

$$=\pi(2x^2)^2$$

$$=\pi(2^2)(x^2)^2$$

 $=4\pi x^4$

• The area of the circle is $4\pi x^4$ square units.

PRACTICE MAKES PURR-FECT®

Check your answers at BigIdeasMath.com. —

Simplify the expression using only positive exponents.

7.
$$\frac{v^7}{v^4} = \underline{v^3}$$

10. $(3h)^3 = \underline{27h^3}$

2

8.
$$(q^2)^5 = \underline{q^{10}}$$

11. $(\frac{5}{x^2})^2 = \underline{x^4}$

$$V = 64x^6$$
 cubic units

$$4x^{2}$$

9.
$$r^3 \cdot r^3 = \underline{r^6}$$

12. $(2k^{-3})^2 = \underline{\frac{4}{k^6}}$