REVIEW: Zero and Negative **Exponents**

Name

Key Concept and Vocabulary

Zero Exponents

Any nonzero number to the zero power is equal to 1. Zero to the zero power, 0^0 , is undefined.

Numbers: $6^0 = 1$

Algebra: $a^0 = 1$, where $a \neq 0$

Skill Examples

- 1. $5^{-3} = \frac{1}{5^3} = \frac{1}{125}$
- **2.** $3^{-6} \cdot 3^6 = 3^{-6+6} = 3^0 = 1$
- **3.** $\frac{4^2}{4^5} = 4^{2-5} = 4^{-3} = \frac{1}{4^3} = \frac{1}{64}$
- **4.** $\frac{7b^{-4}}{k^3} = 7b^{-4-3} = 7b^{-7} = \frac{7}{k^7}$

Negative Exponents

For any integer *n* and any number *a* not equal to 0, a^{-n} is equal to 1 divided by a^n .

Numbers: $4^{-2} = \frac{1}{4^2}$ Algebra: $a^{-n} = \frac{1}{a^{n}}$, where $a \neq 0$

Application Example

5. A faucet leaks water at a rate of 5^{-4} liter per second. How many liters of water leak from the faucet in 1 hour?

There are 3600 seconds in 1 hour. Multiply the time by the rate.

$$3600 \times 5^{-4} = 3600 \cdot \frac{1}{5^4}$$
$$= 3600 \cdot \frac{1}{625}$$
$$= 5\frac{19}{25} = 5.76$$

So, 5.76 liters of water leak from the faucet in 1 hour.

PRACTICE MAKES PURR-FECT®

Evaluate the expression.

7. $8^{-2} = \underline{\qquad} \frac{1}{64}$ **6.** $4^{-4} = \underline{\qquad} \frac{1}{256}$ 10. $\frac{2^3}{2^8} = \underline{\qquad} \frac{1}{32}$ **9.** $9^{-4} \cdot 9^4 = 1$ **13.** $\frac{1}{3^{-3}} \cdot \frac{1}{3^7} = \underline{\qquad} \frac{1}{81}$ **14.** $\frac{4^5 \cdot 4^{-2}}{4^4} = \underline{\qquad} \frac{1}{4^7}$ **12.** $\frac{(-4)^4}{(-4)^6} = \underline{\qquad} \frac{1}{16}$

Simplify. Write the expression using only positive exponents.

15. $\frac{3x^4}{x^9} = \underline{\qquad} \frac{3}{5}$ **16.** $\frac{a^{-5}}{14a^8} = --- \frac{1}{14a^{13}}$

METRIC UNITS In Exercises 18–21, use the table.

- **18.** How many millimeters are in a centimeter?
- **19.** How many decimeters are in a micrometer?
- **20.** How many nanometers are in a centimeter?
- **21.** How many micrometers are in a millimeter?

8. $(-5)^{-6} = ___ \frac{1}{15.625}$ **11.** $\frac{5^3}{5^5} =$ _____ $\frac{1}{25}$

17.
$$\frac{3w^{-4}}{w^{-2}} = \underline{\qquad} \frac{3}{w^2}$$

Unit of Length	Length
decimeter	$10^{-1} \mathrm{m}$
centimeter	$10^{-2} { m m}$
millimeter	$10^{-3} \mathrm{m}$
micrometer	$10^{-6} { m m}$
nanometer	$10^{-9} \mathrm{m}$

Check your answers at BigIdeasMath.com. 🗕

10⁷

 10^{3}