REVIEW: Quotient of **Powers Property**

Key Concept and Vocabulary

Quotient of Powers Property

To divide powers with the same base, subtract their exponents.

Numbers:
$$\frac{3^6}{3^4} = 3^{6-4} = 3^2$$

Algebra:
$$\frac{a^m}{a^n} = a^{m-n}$$
, $a \neq 0$

Visual Model

$$\frac{3^{6}}{3^{4}} = \frac{\cancel{\cancel{3}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{3}} \cdot 3 \cdot 3}{\cancel{\cancel{3}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{3}}} = 3 \cdot 3 = 3^{2}$$

$$\frac{(-4)^4}{(-4)^2} = \frac{(-4) \cdot (-4) \cdot (-4) \cdot (-4)}{(-4) \cdot (-4)}$$
$$= (-4) \cdot (-4)$$
$$= (-4)^2$$

Skill Examples

1.
$$\frac{7^5}{7^2} = 7^{5-2} = 7^3$$


2.
$$\frac{(-5)^9}{(-5)^4} = (-5)^{9-4} = (-5)^5$$

$$3. \ \frac{x^8}{x^6} = x^{8-6} = x^2$$

Application Example

4. The population of a city is about $4 \cdot 5^6$. The land area is about 5⁴ square miles. Find the average number of people per square mile.

People per square mile =
$$\frac{4 \cdot 5^6}{5^4}$$

= $4 \cdot \frac{5^6}{5^4}$
= $4 \cdot 5^2$
= 100

PRACTICE MAKES PURR-FECT®

Check your answers at BigIdeasMath.com. -

Simplify the expression. Write your answer as a power.

5.
$$\frac{9^5}{9^4} =$$
 6. $\frac{4^6}{4^2} =$ **7.** $\frac{2^7}{2^5} =$ **2**

6.
$$\frac{4^6}{4^2} = \underline{\qquad \qquad 4^4}$$

7.
$$\frac{2^7}{2^5} =$$
______2²

8.
$$\frac{(-6)^7}{(-6)^3} = \frac{(-6)^4}{(-6)^4}$$

8.
$$\frac{(-6)^7}{(-6)^3} = \frac{(-6)^4}{(-8)^5} = \frac{(-3)^8}{(-3)^5} = \frac{(-3)^3}{(-8)^3} = \frac{-8}{(-8)^3}$$

10.
$$\frac{(-8)^4}{(-8)^3} = \underline{\hspace{1cm} -8}$$

11.
$$\frac{n^9}{n^5} = \underline{\qquad \qquad n^4}$$

11.
$$\frac{n^9}{n^5} = \underline{\qquad \qquad n^4 \qquad \qquad }$$
 12. $\frac{b^8}{b^2} = \underline{\qquad \qquad b^6 \qquad \qquad }$ **13.** $\frac{y^{12}}{v^7} = \underline{\qquad \qquad y^5 \qquad }$

13.
$$\frac{y^{12}}{y^7} = \underline{y^5}$$

14.
$$\frac{6^5 \cdot 6^2}{6^6} =$$
_____6

17.
$$\frac{3^{10}}{3^4} \cdot \frac{3^7}{3^5} = \underline{}$$

17.
$$\frac{3^{10}}{3^4} \cdot \frac{3^7}{3^5} = \underline{}$$
 18. $\frac{8^5}{8^2} \cdot \frac{8^7}{8^3} = \underline{}$ **19.** $\frac{w^{14}}{w^3} \cdot \frac{w^6}{w^4} = \underline{}$

19.
$$\frac{w^{14}}{w^3} \cdot \frac{w^6}{w^4} = \underline{\qquad \qquad w^{13}}$$

20. SOUND INTENSITY The sound intensity of busy street traffic is 10⁷ times greater than the quietest noise a person can hear. The sound intensity of the front rows at a rock concert is 10^{11} times greater than the quietest noise a person can hear. How many times more intense is the sound in the front rows of a rock concert than the sound of busy street traffic?