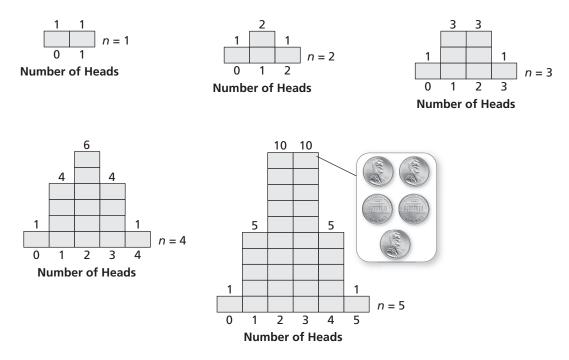
12.6 Binomial Distributions For use with Exploration 12.6


Essential Question How can you determine the frequency of each outcome of an event?

EXPLORATION: Analyzing Histograms

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. The histograms show the results when *n* coins are flipped.

- **a.** In how many ways can 3 heads occur when 5 coins are flipped?
- **b.** Draw a histogram that shows the numbers of heads that can occur when 6 coins are flipped.
- **c.** In how many ways can 3 heads occur when 6 coins are flipped?

12.6 Binomial Distributions (continued)

2 **EXPLORATION:** Determining the Number of Occurrences

Work with a partner.

a. Complete the table showing the numbers of ways in which 2 heads can occur when *n* coins are flipped.

n	3	4	5	6	7
Occurrences of 2 heads					

b. Determine the pattern shown in the table. Use your result to find the number of ways in which 2 heads can occur when 8 coins are flipped.

Communicate Your Answer

3. How can you determine the frequency of each outcome of an event?

4. How can you use a histogram to find the probability of an event?

12.6 Notetaking with Vocabulary For use after Lesson 12.6

In your own words, write the meaning of each vocabulary term.

random variable

probability distribution

binomial distribution

binomial experiment

Core Concepts

Probability Distributions

A **probability distribution** is a function that gives the probability of each possible value of a random variable. The sum of all the probabilities in a probability distribution must equal 1.

Probability Distribution for Rolling a Six-Sided Die									
x	1	2	3	4	5	6			
P (x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$			

Notes:

12.6 Notetaking with Vocabulary (continued)

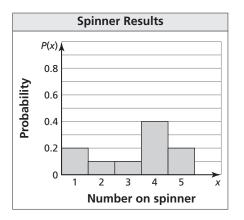
Binomial Experiments

A **binomial experiment** meets the following conditions.

- There are *n* independent trials.
- Each trial has only two possible outcomes: success and failure.
- The probability of success is the same for each trial. This probability is denoted by p. The probability of failure is 1 p.

For a binomial experiment, the probability of exactly k successes in n trials is

$$P(k \text{ successes}) = {}_{n}C_{k}p^{k}(1-p)^{n-k}.$$


Notes:

Extra Practice

1. Make a table and draw a histogram showing the probability distribution for the random variable P if P = the product when two six-sided dice are rolled.

12.6 Notetaking with Vocabulary (continued)

2. Use the probability distribution to determine (a) the number that is most likely to be spun on a spinner, and (b) the probability of spinning a perfect square.

3. Calculate the probability of flipping a coin twenty times and getting nineteen heads.

- **4.** According to a survey, 78% of women in a city watch professional football. You ask four randomly chosen women from the city whether they watch professional football.
 - **a**. Draw a histogram of the binomial distribution for your survey.

- **b**. What is the most likely outcome of your survey?
- c. What is the probability that at most one woman watches professional football?