\qquad

11.1
 Circumference and Arc Length
 For use with Exploration 11.1

Essential Question How can you find the length of a circular arc?

1 EXPLORATION: Finding the Length of a Circular Arc
Work with a partner. Find the length of each gray circular arc.
a. entire circle

b. one-fourth of a circle

c. one-third of a circle

d. five-eighths of a circle

\qquad

11.1 Circumference and Arc Length (continued)

2 EXPLORATION: Writing a Conjecture

Work with a partner. The rider is attempting to stop with the front tire of the motorcycle in the painted rectangular box for a skills test. The front tire makes exactly one-half additional revolution before stopping. The diameter of the tire is 25 inches. Is the front tire still in contact with the painted box? Explain.

Communicate Your Answer

3. How can you find the length of a circular arc?
4. A motorcycle tire has a diameter of 24 inches. Approximately how many inches does the motorcycle travel when its front tire makes three-fourths of a revolution?
\qquad

11.1

In your own words, write the meaning of each vocabulary term. circumference
arc length
radian

Core Concepts

Circumference of a Circle

The circumference C of a circle is $C=\pi d$ or $C=2 \pi r$, where d is the diameter of the circle and r is the radius of the circle.

Notes:

$$
C=\pi d=2 \pi r
$$

\qquad

11.1 Notetaking with Vocabulary (continued)

Arc Length

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$$
\begin{aligned}
& \frac{\text { Arc length of } \overparen{A B}}{2 \pi r}=\frac{m \overparen{A B}}{360^{\circ}}, \text { or } \\
& \text { Arc length of } \overparen{A B}=\frac{m \overparen{A B}}{360^{\circ}} \cdot 2 \pi r
\end{aligned}
$$

Notes:

Converting Between Degrees and Radians

Degrees to radians
Multiply degree measure by
$\frac{2 \pi \text { radians }}{360^{\circ}}$, or $\frac{\pi \text { radians }}{180^{\circ}}$.

Radians to degrees

Multiply radian measure by

$$
\frac{360^{\circ}}{2 \pi \text { radians }} \text {, or } \frac{180^{\circ}}{\pi \text { radians }} .
$$

Notes:
\qquad

11.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-5, find the indicated measure.

1. diameter of a circle with a circumference of 10 inches
2. circumference of a circle with a radius of 3 centimeters
3. radius of a circle with a circumference of 8 feet
4. circumference of a circle with a diameter of 2.4 meters
5. arc length of $\overparen{A C}$

In Exercises 6 and 7, convert the angle measure.
6. Convert 60° to radians.
7. Convert $\frac{5 \pi}{6}$ radians to degrees.

