\qquad

10.6
 Segment Relationships in Circles
 For use with Exploration 10.6

Essential Question What relationships exist among the segments formed by two intersecting chords or among segments of two secants that intersect outside a circle?

1 EXPLORATION: Segments Formed by Two Intersecting Chords
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.
a. Construct two chords $\overline{B C}$ and $\overline{D E}$ that intersect in the interior of a circle at point F.

Sample

b. Find the segment lengths $B F, C F, D F$, and $E F$ and complete the table. What do you observe?

$B F$	$C F$	$B F \bullet C F$
$D F$	$E F$	$D F \bullet E F$

c. Repeat parts (a) and (b) several times. Write a conjecture about your results.
\qquad

10.6 Segment Relationships in Circles (continued)

2 EXPLORATION: Secants Intersecting Outside a Circle

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.
a. Construct two secants $\overrightarrow{B C}$ and $\overrightarrow{B D}$ that intersect at a point B outside a circle, as shown.

Sample
b. Find the segment lengths $B E, B C, B F$, and $B D$, and complete the table. What do you observe?

$B E$	$B C$	$B E \bullet B C$
$B F$	$B D$	$B F \bullet B D$

c. Repeat parts (a) and (b) several times. Write a conjecture about your results.

Communicate Your Answer

3. What relationships exist among the segments formed by two intersecting chords or among segments of two secants that intersect outside a circle?
4. Find the segment length $A F$ in the figure at the right.

\qquad

10.6
 Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
segments of a chord
tangent segment
secant segment
external segment

Theorems

Theorem 10.18 Segments of Chords Theorem

If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.

$E A \cdot E B=E C \cdot E D$

Notes:

\qquad

10.6 Notetaking with Vocabulary (continued)

Core Concepts

Tangent Segment and Secant Segment

A tangent segment is a segment that is tangent to a circle at an endpoint. A secant segment is a segment that contains a chord of a circle and has exactly one endpoint outside the circle. The part of a secant segment that is outside the circle is called an external segment.

$\overline{P S}$ is a tangent segment.
$\overline{P R}$ is a secant segment.
$\overline{P Q}$ is the external segment of $\overline{P R}$.

Notes:

Theorems

Theorem 10.19 Segments of Secants Theorem

If two secant segments share the same endpoint outside a circle, then the product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment.

Notes:

$E A \cdot E B=E C \cdot E D$

Theorem 10.20 Segments of Secants and Tangents Theorem

If a secant segment and a tangent segment share an endpoint outside a circle, then the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment.

Notes:

$$
E A^{2}=E C \cdot E D
$$

\qquad

10.6 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-4, find the value of \boldsymbol{x}.
1.

2.

3.

4.

