10.5

Angle Relationships in Circles

For use with Exploration 10.5

Essential Question When a chord intersects a tangent line or another chord, what relationships exist among the angles and arcs formed?

EXPLORATION: Angles Formed by a Chord and Tangent Line

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Construct a chord in a circle. At one of the endpoints of the chord, construct a tangent line to the circle.
- **b.** Find the measures of the two angles formed by the chord and the tangent line.
- **c.** Find the measures of the two circular arcs determined by the chord.

d. Repeat parts (a)–(c) several times. Record your results in the following table. Then write a conjecture that summarizes the data.

Angle Measure 1	Angle Measure 2	Circular Arc Measure 1	Circular Arc Measure 2

10.5 Angle Relationships in Circles (continued)

EXPLORATION: Angles Formed by Intersecting Chords

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Construct two chords that intersect inside a circle.
- **b.** Find the measure of one of the angles formed by the intersecting chords.
- **c.** Find the measures of the arcs intercepted by the angle in part (b) and its vertical angle. What do you observe?

Sample

d. Repeat parts (a)–(c) several times. Record your results in the following table. Then write a conjecture that summarizes the data.

Angle Measure	Arc Measures	Observations

Communicate Your Answer

3. When a chord intersects a tangent line or another chord, what relationships exist among the angles and arcs formed?

- **4.** Line *m* is tangent to the circle in the figure at the right. Find the measure of $\angle 1$.
- **5.** Two chords intersect inside a circle to form a pair of vertical angles with measures of 55°. Find the sum of the measures of the arcs intercepted by the two angles.

Notetaking with Vocabulary For use after Lesson 10.5

Tor use after Lesson 10.0

In your own words, write the meaning of each vocabulary term.

circumscribed angle

Theorems

Theorem 10.14 Tangent and Intersected Chord Theorem

If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc.

$$m \angle 1 = \frac{1}{2} m \widehat{AB}$$
 $m \angle 2 = \frac{1}{2} m \widehat{BCA}$

Notes:

Core Concepts

Intersecting Lines and Circles

If two nonparallel lines intersect a circle, there are three places where the lines can intersect.

inside the circle

Notes:

Theorems

Theorem 10.15 Angles Inside the Circle Theorem

If two chords intersect *inside* a circle, then the measure of each angle is one-half the *sum* of the measure of the arcs intercepted by the angle and its vertical angle.

$$m \angle 1 = \frac{1}{2} (m\widehat{DC} + m\widehat{AB}),$$

$$m\angle 2 = \frac{1}{2}(m\widehat{AD} + m\widehat{BC})$$

Theorem 10.16 Angles Outside the Circle Theorem

If a tangent and a secant, two tangents, or two secants intersect *outside* a circle, then the measure of the angle formed is one-half the *difference* of the measures of the intercepted arcs.

$$m \angle 1 = \frac{1}{2} (m\widehat{BC} - m\widehat{AC})$$

$$m\angle 2 = \frac{1}{2}(\widehat{mPQR} - \widehat{mPR})$$

$$m \angle 3 = \frac{1}{2} (m\widehat{XY} - m\widehat{WZ})$$

Notes:

Core Concepts

Circumscribed Angle

A **circumscribed angle** is an angle whose sides are tangent to a circle.

Notes:

Theorems

Theorem 10.17 Circumscribed Angle Theorem

The measure of a circumscribed angle is equal to 180° minus the measure of the central angle that intercepts the same arc.

Notes:

$$m\angle ADB = 180^{\circ} - m\angle ACB$$

10.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–3, \overrightarrow{CD} is tangent to the circle. Find the indicated measure.

1. *m∠ABC*

2. \widehat{mAB}

3. \widehat{mAEB}

In Exercises 4 and 5, $\widehat{mADB} = 220^{\circ}$ and $\widehat{m\angle B} = 21^{\circ}$. Find the indicated measure.

4. \widehat{mAB}

5. *m∠ACB*

In Exercises 6–9, find the value of x.

6

7.

8.

9.

