\qquad

10.2 Finding Arc Measures

For use with Exploration 10.2

Essential Question How are circular arcs measured?

A central angle of a circle is an angle whose vertex is the center of the circle. A circular arc is a portion of a circle, as shown below. The measure of a circular arc is the measure of its central angle.
If $m \angle A O B<180^{\circ}$, then the circular arc is called a minor arc and is denoted by $\overparen{A B}$.

1 EXPLORATION: Measuring Circular Arcs

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software to find the measure of $\overparen{B C}$.
Verify your answers using trigonometry.
a.

Points
$A(0,0)$
$B(5,0)$
$C(4,3)$
b.

Points
A(0, 0)
$B(5,0)$
$C(3,4)$
\qquad

10.2 Finding Arc Measures (continued)

1 EXPLORATION: Measuring Circular Arcs (continued)
c.

Points $A(0,0)$
$B(4,3)$
$C(3,4)$
d.

Points
$A(0,0)$
$B(4,3)$
$C(-4,3)$

Communicate Your Answer

2. How are circular arcs measured?
3. Use dynamic geometry software to draw a circular arc with the given measure.
a. 30°
b. 45°
c. 60°
d. 90°
\qquad

10.2
 Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
central angle
minor arc
major arc
semicircle
measure of a minor arc
measure of a major arc
adjacent arcs
congruent circles
congruent arcs
similar arcs

Core Concepts

Measuring Arcs

The measure of a minor arc is the measure of its central angle. The expression $m \overparen{A B}$ is read as "the measure of arc $A B$."

The measure of the entire circle is 360°. The measure of a major arc is the difference of 360° and the measure of the related minor arc. The measure of a semicircle is 180°.

$m \widehat{A D B}=360^{\circ}-50^{\circ}=310^{\circ}$

Notes:

\qquad
\qquad

10.2 Notetaking with Vocabulary (continued)

Postulates

Postulate 10.1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

Notes:

Theorems

Theorem 10.3 Congruent Circles Theorem

Two circles are congruent circles if and only if they have the same radius.

Notes:

$$
\odot A \cong \odot B \text { if and only if } \overline{A C} \cong \overline{B D} .
$$

Theorem 10.4 Congruent Central Angles Theorem

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding central angles are congruent.

Notes:

$$
\begin{aligned}
& \overparen{B C} \cong \overparen{D E} \text { if and only if } \\
& \angle B A C \cong \angle D A E .
\end{aligned}
$$

Theorem 10.5 Similar Circles Theorem

All circles are similar.
Notes:
\qquad

10.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-8, identify the given arc as a major arc, minor arc, or semicircle. Then find the measure of the arc.

1. $\overparen{A B}$
2. $\overparen{A B C}$
3. $\overparen{A B D}$
4. $\overparen{B C}$
5. $\overparen{B A C}$
6. $\overparen{D A B}$

7. $\overparen{A D}$
8. $\overparen{C D}$
9. In $\odot E$ above, tell whether $\widehat{A B C} \cong \widehat{A D C}$. Explain why or why not.
10. In $\odot K$, find the measure of $\overparen{D E}$.

11. Find the value of x. Then find the measure of $\overparen{A B}$.

