$\qquad$

## 9.7 <br> Law of Sines and Law of Cosines <br> For use with Exploration 9.7

## Essential Question What are the Law of Sines and the Law of Cosines?

## 1 EXPLORATION: Discovering the Law of Sines

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Complete the table for the triangle shown. What can you conclude?


Sample
Segments
$a=3.16$
$b=6.32$
$c=5.10$
Angles

$$
\begin{aligned}
& m \angle A=29.74^{\circ} \\
& m \angle B=97.13^{\circ} \\
& m \angle C=53.13^{\circ}
\end{aligned}
$$

| $m \angle A$ | $a$ | $\frac{\sin A}{a}$ | $m \angle B$ | $b$ | $\frac{\sin B}{b}$ | $m \angle C$ | $c$ | $\frac{\sin C}{c}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |

b. Use dynamic geometry software to draw two other triangles. Complete a table for each triangle. Use your results to write a conjecture about the relationship between the sines of the angles and the lengths of the sides of a triangle.

| $m \angle A$ | $a$ | $\frac{\sin A}{a}$ | $m \angle B$ | $b$ | $\frac{\sin B}{b}$ | $m \angle C$ | $c$ | $\frac{\sin C}{c}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |


| $m \angle A$ | $a$ | $\frac{\sin A}{a}$ | $m \angle B$ | $b$ | $\frac{\sin B}{b}$ | $m \angle C$ | $c$ | $\frac{\sin C}{c}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |

$\qquad$

### 9.7 Law of Sines and Law of Cosines (continued)

## 2 EXPLORATION: Discovering the Law of Cosines

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Complete the table for the triangle in Exploration 1(a). What can you conclude?

| $c$ | $c^{2}$ | $a$ | $a^{2}$ | $b$ | $b^{2}$ | $m \angle C$ | $a^{2}+b^{2}-2 a b \cos C$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

b. Use dynamic geometry software to draw two other triangles. Complete a table for each triangle. Use your results to write a conjecture about what you observe in the completed tables.

| $c$ | $c^{2}$ | $a$ | $a^{2}$ | $b$ | $b^{2}$ | $m \angle C$ | $a^{2}+b^{2}-2 a b \cos C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |


| $c$ | $c^{2}$ | $a$ | $a^{2}$ | $b$ | $b^{2}$ | $m \angle C$ | $a^{2}+b^{2}-2 a b \cos C$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

## Communicate Your Answer

3. What are the Law of Sines and the Law of Cosines?
4. When would you use the Law of Sines to solve a triangle? When would you use the Law of Cosines to solve a triangle?
$\qquad$

## 9.7

In your own words, write the meaning of each vocabulary term.
Law of Sines

Law of Cosines

## Core Concepts

## Area of a Triangle

The area of any triangle is given by one-half the product of the lengths of two sides times the sine of their included angle. For $\triangle A B C$ shown, there are three ways to calculate the area.


$$
\text { Area }=\frac{1}{2} b c \sin A \quad \text { Area }=\frac{1}{2} a c \sin B \quad \text { Area }=\frac{1}{2} a b \sin C
$$

## Notes:

$\qquad$

### 9.7 Notetaking with Vocabulary (continued)

## Theorems

## Theorem 9.9 Law of Sines

The Law of Sines can be written in either of the following forms for $\triangle A B C$ with sides of length $a, b$, and $c$.

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

## Notes:

## Theorem 9.10 Law of Cosines

If $\triangle A B C$ has sides of length $a, b$, and $c$, as shown, then the following are true.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$



## Notes:

$\qquad$
$\qquad$

### 9.7 Notetaking with Vocabulary (continued)

## Extra Practice

In Exercises 1-3, use a calculator to find the trigonometric ratio. Round your answer to four decimal places.

1. $\sin 225^{\circ}$
2. $\cos 111^{\circ}$
3. $\tan 96^{\circ}$

In Exercises 4 and 5, find the area of the triangle. Round your answer to the nearest tenth.
4.

5.


In Exercises 6-8, solve the triangle. Round decimal answers to the nearest tenth.
6.

7.

8.


