\qquad

9.2 Special Right Triangles

For use with Exploration 9.2
Essential Question What is the relationship among the side lengths of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles? $30^{\circ}-60^{\circ}-90^{\circ}$ triangles?

1 EXPLORATION: Side Ratios of an Isosceles Right Triangle
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Use dynamic geometry software to construct an isosceles right triangle with a leg length of 4 units.
b. Find the acute angle measures. Explain why this triangle is called a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.
c. Find the exact ratios of the side lengths (using square roots).

$$
\frac{A B}{A C}=
$$

$$
\frac{A B}{B C}=
$$

$$
\frac{A C}{B C}=
$$

Sample
Points
$A(0,4)$
$B(4,0)$
$C(0,0)$
Segments
$A B=5.66$
$B C=4$
$A C=4$
Angles
$m \angle A=45^{\circ}$
$m \angle B=45^{\circ}$
d. Repeat parts (a) and (c) for several other isosceles right triangles. Use your results to write a conjecture about the ratios of the side lengths of an isosceles right triangle.
\qquad
9.2 Special Right Triangles (continued)

2 EXPLORATION: Side Ratios of a $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Use dynamic geometry software to construct a right triangle with acute angle measures of 30° and 60° (a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle), where the shorter leg length is 3 units.
b. Find the exact ratios of the side lengths (using square roots).
$\frac{A B}{A C}=$
$\frac{A B}{B C}=$
$\frac{A C}{B C}=$

$$
\begin{aligned}
& \text { Sample } \\
& \text { Points } \\
& A(0,5.20) \\
& B(3,0) \\
& C(0,0) \\
& \text { Segments } \\
& A B=6 \\
& B C=3 \\
& A C=5.20 \\
& \text { Angles } \\
& m \angle A=30^{\circ} \\
& m \angle B=60^{\circ}
\end{aligned}
$$

c. Repeat parts (a) and (b) for several other $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. Use your results to write a conjecture about the ratios of the side lengths of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

Communicate Your Answer

3. What is the relationship among the side lengths of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles? $30^{\circ}-60^{\circ}-90^{\circ}$ triangles?
\qquad

9.2
 Notetaking with Vocabulary For use after Lesson 9.2

In your own words, write the meaning of each vocabulary term.
isosceles triangle

Theorems

Theorem $9.4 \quad 45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem
In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is
$\sqrt{2}$ times as long as each leg.

Notes:

$$
\text { hypotenuse }=\operatorname{leg} \bullet \sqrt{2}
$$

Theorem $9.5 \quad 30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg, and the longer
leg is $\sqrt{3}$ times as long as the shorter leg.

Notes:

hypotenuse $=$ shorter leg $\bullet 2$
longer leg $=$ shorter leg $\bullet \sqrt{3}$
\qquad Date \qquad

9.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-4, find the value of x. Write your answer in simplest form.
1.

2.

3.

4.

In Exercises 5-7, find the values of \boldsymbol{x} and \boldsymbol{y}. Write your answers in simplest form.
5.

6.

7.

\qquad

9.2 Notetaking with Vocabulary (continued)

In Exercises 8 and 9, sketch the figure that is described. Find the indicated length. Round decimal answers to the nearest tenth.
8. The length of a diagonal in a square is 32 inches. Find the perimeter of the square.
9. An isosceles triangle with 30° base angles has an altitude of $\sqrt{3}$ meters. Find the length of the base of the isosceles triangle.
10. Find the area of $\triangle D E F$. Round decimal answers to the nearest tenth.

