8.4 Proportionality Theorems For use with Exploration 8.4

Essential Question What proportionality relationships exist in a triangle intersected by an angle bisector or by a line parallel to one of the sides?

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any $\triangle ABC$.

a. Construct \overline{DE} parallel to \overline{BC} with endpoints on \overline{AB} and \overline{AC} , respectively.

- **b.** Compare the ratios of *AD* to *BD* and *AE* to *CE*.
- **c.** Move \overline{DE} to other locations parallel to \overline{BC} with endpoints on \overline{AB} and \overline{AC} , and repeat part (b).

d. Change $\triangle ABC$ and repeat parts (a)–(c) several times. Write a conjecture that summarizes your results.

8.4 Proportionality Theorems (continued)

EXPLORATION: Discovering a Proportionality Relationship

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any $\triangle ABC$.

a. Bisect $\angle B$ and plot point D at the intersection of the angle bisector and AC.

b. Compare the ratios of *AD* to *DC* and *BA* to *BC*.

c. Change $\triangle ABC$ and repeat parts (a) and (b) several times. Write a conjecture that summarizes your results.

Communicate Your Answer

3. What proportionality relationships exist in a triangle intersected by an angle bisector or by a line parallel to one of the sides?

4. Use the figure at the right to write a proportion.

8.4 Notetaking with Vocabulary For use after Lesson 8.4

In your own words, write the meaning of each vocabulary term.

corresponding angles

ratio

proportion

Theorems

Theorem 8.6 Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.

Notes:

Theorem 8.7 Converse of the Triangle Proportionality Theorem

If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

Notes:

8.4 Notetaking with Vocabulary (continued)

Theorem 8.8 Three Parallel Lines Theorem

If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Notes:

Theorem 8.9 Triangle Angle Bisector Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

Notes:

Extra Practice

In Exercises 1 and 2, find the length of \overline{AB} .

8.4 Notetaking with Vocabulary (continued)

In Exercises 3 and 4, determine whether $\overline{AB} \parallel \overline{XY}$.

In Exercises 5–7, use the diagram to complete the proportion.

In Exercises 8 and 9, find the value of the variable.

