\qquad

8.4
 Proportionality Theorems
 For use with Exploration 8.4

Essential Question What proportionality relationships exist in a triangle intersected by an angle bisector or by a line parallel to one of the sides?

1 EXPLORATION: Discovering a Proportionality Relationship

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software to draw any $\triangle A B C$.
a. Construct $\overline{D E}$ parallel to $\overline{B C}$ with endpoints on $\overline{A B}$ and $\overline{A C}$, respectively.

b. Compare the ratios of $A D$ to $B D$ and $A E$ to $C E$.
c. Move $\overline{D E}$ to other locations parallel to $\overline{B C}$ with endpoints on $\overline{A B}$ and $\overline{A C}$, and repeat part (b).
d. Change $\triangle A B C$ and repeat parts (a)-(c) several times. Write a conjecture that summarizes your results.
\qquad

8.4 Proportionality Theorems (continued)

2 EXPLORATION: Discovering a Proportionality Relationship

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any $\triangle A B C$.
a. Bisect $\angle B$ and plot point D at the intersection of the angle bisector and $\overline{A C}$.
b. Compare the ratios of $A D$ to $D C$ and $B A$ to $B C$.

c. Change $\triangle A B C$ and repeat parts (a) and (b) several times. Write a conjecture that summarizes your results.

Communicate Your Answer

3. What proportionality relationships exist in a triangle intersected by an angle bisector or by a line parallel to one of the sides?
4. Use the figure at the right to write a proportion.

\qquad
\qquad

8.4

In your own words, write the meaning of each vocabulary term. corresponding angles
ratio
proportion

Theorems

Theorem 8.6 Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.

Notes:

If $\overline{T U} \| \overline{Q S}$, then $\frac{R T}{T Q}=\frac{R U}{U S}$.

Theorem 8.7 Converse of the Triangle Proportionality Theorem

If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

Notes:

$$
\text { If } \frac{R T}{T Q}=\frac{R U}{U S}, \text { then } \overline{T U} \| \overline{Q S} .
$$

\qquad

8.4 Notetaking with Vocabulary (continued)

Theorem 8.8 Three Parallel Lines Theorem

If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Notes:

Theorem 8.9 Triangle Angle Bisector Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

$\frac{A D}{D B}=\frac{C A}{C B}$

Extra Practice

In Exercises 1 and 2, find the length of $\overline{A B}$.
1.

2.

\qquad
\qquad

8.4 Notetaking with Vocabulary (continued)

In Exercises 3 and 4, determine whether $A B \| X Y$.
3.

4.

In Exercises 5-7, use the diagram to complete the proportion.

5. $\frac{U V}{U W}=\frac{X Y}{\square}$
6. $\frac{X Y}{Y Z}=\frac{\square}{V W}$
7. $\frac{\square}{Z Y}=\frac{W U}{W V}$

In Exercises 8 and 9, find the value of the variable.
8.

9.

