\qquad
8.3

Proving Triangle Similarity by SSS and SAS

For use with Exploration 8.3
Essential Question What are two ways to use corresponding sides of two triangles to determine that the triangles are similar?

1 EXPLORATION: Deciding Whether Triangles Are Similar

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.
a. Construct $\triangle A B C$ and $\triangle D E F$ with the side lengths given in column 1 of the table below.

	$\mathbf{1 .}$	$\mathbf{2 .}$	$\mathbf{3 .}$	$\mathbf{4 .}$	$\mathbf{5 .}$	$\mathbf{6 .}$	$\mathbf{7 .}$
$\boldsymbol{A B}$	5	5	6	15	9	24	
$\boldsymbol{B C}$	8	8	8	20	12	18	
$\boldsymbol{A C}$	10	10	10	10	8	16	
$\boldsymbol{D E}$	10	15	9	12	12	8	
$\boldsymbol{E F}$	16	24	12	16	15	6	
$\boldsymbol{D F}$	20	30	15	8	10	8	
$\boldsymbol{m} \angle \boldsymbol{A}$							
$\boldsymbol{m} \angle \boldsymbol{B}$							
$\boldsymbol{m} \angle \boldsymbol{C}$							
$\boldsymbol{m} \angle \boldsymbol{D}$							
$\boldsymbol{m} \angle \boldsymbol{E}$							
$\boldsymbol{m} \angle \boldsymbol{F}$							

b. Complete column 1 in the table above.
c. Are the triangles similar? Explain your reasoning.
d. Repeat parts (a)-(c) for columns 2-6 in the table.
e. How are the corresponding side lengths related in each pair of triangles that are similar? Is this true for each pair of triangles that are not similar?
\qquad
8.3 Proving Triangle Similarity by SSS and SAS (continued)

1 EXPLORATION: Deciding Whether Triangles Are Similar (continued)
f. Make a conjecture about the similarity of two triangles based on their corresponding side lengths.
g. Use your conjecture to write another set of side lengths of two similar triangles. Use the side lengths to complete column 7 of the table.

2 EXPLORATION: Deciding Whether Triangles Are Similar
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software. Construct any $\triangle A B C$.
a. Find $A B, A C$, and $m \angle A$. Choose any positive rational number k and construct $\triangle D E F$ so that $D E=k \bullet A B, D F=k \bullet A C$, and $m \angle D=m \angle A$.
b. Is $\triangle D E F$ similar to $\triangle A B C$? Explain your reasoning.
c. Repeat parts (a) and (b) several times by changing $\triangle A B C$ and k. Describe your results.

Communicate Your Answer

3. What are two ways to use corresponding sides of two triangles to determine that the triangles are similar?
\qquad

Notetaking with Vocabulary

For use after Lesson 8.3
In your own words, write the meaning of each vocabulary term.
similar figures
corresponding parts
slope
parallel lines
perpendicular lines

Theorems

Theorem 8.4 Side-Side-Side (SSS) Similarity Theorem
If the corresponding side lengths of two triangles are proportional, then the triangles are similar.

If $\frac{A B}{R S}=\frac{B C}{S T}=\frac{C A}{T R}$, then $\triangle A B C \sim \triangle R S T$.
Notes:
\qquad
\qquad
8.3 Notetaking with Vocabulary (continued)

Theorem 8.5 Side-Angle-Side (SAS) Similarity Theorem

If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar.

If $\angle X \cong \angle M$ and $\frac{Z X}{P M}=\frac{X Y}{M N}$, then
$\triangle X Y Z \sim \triangle M N P$.
Notes:

Extra Practice

In Exercises 1 and 2, determine whether $\triangle R S T$ is similar to $\triangle A B C$.

1.

2.

\qquad
\qquad

8.3 Notetaking with Vocabulary (continued)

3. Find the value of x that makes $\triangle R S T \sim \triangle H G K$.

4. Verify that $\triangle R S T \sim \triangle X Y Z$. Find the scale factor of $\triangle R S T$ to $\triangle X Y Z$.

$$
\begin{aligned}
& \triangle R S T: R S=12, S T=15, T R=24 \\
& \triangle X Y Z: X Y=28, Y Z=35, Z X=56
\end{aligned}
$$

In Exercises 5 and 6, use $\triangle A B C$.

5. The shortest side of a triangle similar to $\triangle A B C$ is 15 units long. Find the other side lengths of the triangle.

6. The longest side of a triangle similar to $\triangle A B C$ is 6 units long. Find the other side lengths of the triangle.
