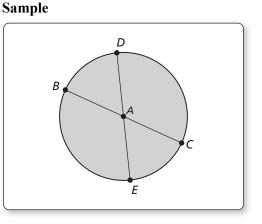
7.4

Properties of Special Parallelograms

For use with Exploration 7.4

Essential Question What are the properties of the diagonals of rectangles, rhombuses, and squares?



EXPLORATION: Identifying Special Quadrilaterals

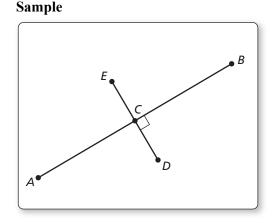
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Draw a circle with center *A*.
- **b.** Draw two diameters of the circle. Label the endpoints *B*, *C*, *D*, and *E*.
- c. Draw quadrilateral *BDCE*.

d. Is *BDCE* a parallelogram? rectangle? rhombus? square? Explain your reasoning.

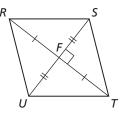
e. Repeat parts (a) – (d) for several other circles. Write a conjecture based on your results.


7.4 Properties of Special Parallelograms (continued)

EXPLORATION: Identifying Special Quadrilaterals

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.


- **a.** Construct two segments that are perpendicular bisectors of each other. Label the endpoints *A*, *B*, *D*, and *E*. Label the intersection *C*.
- **b.** Draw quadrilateral *AEBD*.
- **c.** Is *AEBD* a parallelogram? rectangle? rhombus? square? Explain your reasoning.

d. Repeat parts (a) – (c) for several other segments. Write a conjecture based on your results.

Communicate Your Answer

- 3. What are the properties of the diagonals of rectangles, rhombuses, and squares?
- **4.** Is *RSTU* a parallelogram? rectangle? rhombus? square? Explain your reasoning.

5. What type of quadrilateral has congruent diagonals that bisect each other?

In your own words, write the meaning of each vocabulary term.

rhombus

rectangle

square

Core Concepts

Rhombuses, Rectangles, and Squares

Notes:

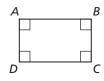
A **rhombus** is a parallelogram with four congruent sides.

A **rectangle** is a parallelogram with four right angles.

A **square** is a parallelogram with four congruent sides and four right angles.

Corollary 7.2 Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.


ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

Corollary 7.3 Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.

ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

7.4 Notetaking with Vocabulary (continued)

Corollary 7.4 Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a square if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$ and $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

Notes:

Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

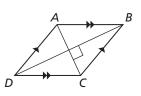
 $\square ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

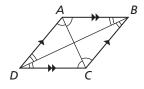
Notes:

Theorem 7.12 Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\square ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$, and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

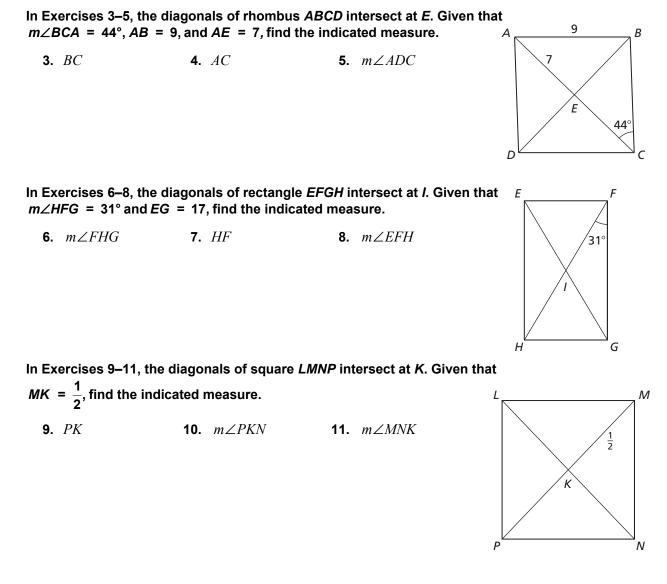

Notes:


Theorem 7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

Notes:



7.4 Notetaking with Vocabulary (continued)

Extra Practice

- **1.** For any rhombus *MNOP*, decide whether the statement $\overline{MO} \cong \overline{NP}$ is *always* or *sometimes* true. Draw a diagram and explain your reasoning.
- **2.** For any rectangle *PQRS*, decide whether the statement $\angle PQS \cong \angle RSQ$ is *always* or *sometimes* true. Draw a diagram and explain your reasoning.

