\qquad

Essential Question What conjectures can you make about the medians and altitudes of a triangle?

1 EXPLORATION: Finding Properties of the Medians of a Triangle

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software. Draw any $\triangle A B C$.
a. Plot the midpoint of $\overline{B C}$ and label it D. Draw $\overline{A D}$, which is a median of $\triangle A B C$. Construct the medians to the other two sides of $\triangle A B C$.

Sample

Points
$A(1,4)$
$B(6,5)$
$C(8,0)$
$D(7,2.5)$
$E(4.5,2)$
$G(5,3)$
b. What do you notice about the medians? Drag the vertices to change $\triangle A B C$. Use your observations to write a conjecture about the medians of a triangle.
c. In the figure above, point G divides each median into a shorter segment and a longer segment. Find the ratio of the length of each longer segment to the length of the whole median. Is this ratio always the same? Justify your answer.
\qquad
6.3 Medians and Altitudes of Triangles (continued)

2 EXPLORATION: Finding Properties of the Altitudes of a Triangle

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software. Draw any $\triangle A B C$.
a. Construct the perpendicular segment from vertex A to $\overline{B C}$. Label the endpoint D. $\overline{A D}$ is an altitude of $\triangle A B C$.
b. Construct the altitudes to the other two sides of $\triangle A B C$. What do you notice?

c. Write a conjecture about the altitudes of a triangle.

Test your conjecture by dragging the vertices to change $\triangle A B C$.

Communicate Your Answer

3. What conjectures can you make about the medians and altitudes of a triangle?
4. The length of median $\overline{R U}$ in $\triangle R S T$ is 3 inches. The point of concurrency of the three medians of $\triangle R S T$ divides $\overline{R U}$ into two segments. What are the lengths of these two segments?
\qquad

6.3
 Notetaking with Vocabulary For use after Lesson 6.3

In your own words, write the meaning of each vocabulary term.
median of a triangle
centroid
altitude of a triangle
orthocenter

Theorems

Theorem 6.7 Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle A B C$ meet at point P, and

$A P=\frac{2}{3} A E, B P=\frac{2}{3} B F$, and $C P=\frac{2}{3} C D$.

Notes:
\qquad

6.3 Notetaking with Vocabulary (continued)

Core Concepts

Orthocenter

The lines containing the altitudes of a triangle are concurrent. This point of concurrency is the orthocenter of the triangle.

The lines containing $\overline{A F}, \overline{B D}$, and $\overline{C E}$ meet at the orthocenter G of $\triangle A B C$.

Notes:

Extra Practice

In Exercises 1-3, point P is the centroid of $\triangle L M N$. Find $P N$ and $Q P$.

1. $Q N=33$

2. $Q N=45$

3. $Q N=39$

\qquad
\qquad

6.3 Notetaking with Vocabulary (continued)

In Exercises 4 and 5, point D is the centroid of $\triangle A B C$. Find $C D$ and $C E$.
4. $D E=7$
5. $D E=12$

In Exercises 6-8, find the coordinates of the centroid of the triangle with the given vertices.
6. $A(-2,-1), B(1,8)$, $C(4,-1)$

7. $D(-5,4), E(-3,-2)$, $F(-1,4)$

8. $J(8,7), K(20,5), L(8,3)$

In Exercises 9-11, tell whether the orthocenter is inside, on, or outside the triangle. Then find the coordinates of the orthocenter.
9. $X(3,6), Y(3,0)$,
$Z(11,0)$

10. $L(-4,-4), M(1,1)$, $N(6,-4)$

11. $P(3,4), Q(11,4), R(9,-2)$

