<u>6.</u>3

Medians and Altitudes of Triangles

For use with Exploration 6.3

Essential Question What conjectures can you make about the medians and altitudes of a triangle?

EXPLORATION: Finding Properties of the Medians of a Triangle

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software. Draw any $\triangle ABC$.

a. Plot the midpoint of \overline{BC} and label it *D*. Draw \overline{AD} , which is a *median* of $\triangle ABC$. Construct the medians to the other two sides of $\triangle ABC$.

- **b.** What do you notice about the medians? Drag the vertices to change $\triangle ABC$. Use your observations to write a conjecture about the medians of a triangle.
- **c.** In the figure above, point *G* divides each median into a shorter segment and a longer segment. Find the ratio of the length of each longer segment to the length of the whole median. Is this ratio always the same? Justify your answer.

6.3 Medians and Altitudes of Triangles (continued)

EXPLORATION: Finding Properties of the Altitudes of a Triangle

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software. Draw any $\triangle ABC$.

- **a.** Construct the perpendicular segment from vertex A to \overline{BC} . Label the endpoint D. \overline{AD} is an *altitude* of $\triangle ABC$.
- **b.** Construct the altitudes to the other two sides of $\triangle ABC$. What do you notice?

c. Write a conjecture about the altitudes of a triangle. Test your conjecture by dragging the vertices to change $\triangle ABC$.

Communicate Your Answer

- 3. What conjectures can you make about the medians and altitudes of a triangle?
- 4. The length of median \overline{RU} in $\triangle RST$ is 3 inches. The point of concurrency of the three medians of $\triangle RST$ divides \overline{RU} into two segments. What are the lengths of these two segments?

6.3 Notetaking with Vocabulary For use after Lesson 6.3

In your own words, write the meaning of each vocabulary term.

median of a triangle

centroid

altitude of a triangle

orthocenter

Theorems

Theorem 6.7 Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle ABC$ meet at point *P*, and

$$AP = \frac{2}{3}AE$$
, $BP = \frac{2}{3}BF$, and $CP = \frac{2}{3}CD$.

Notes:

6.3 Notetaking with Vocabulary (continued)

Core Concepts

Orthocenter

The lines containing the altitudes of a triangle are concurrent. This point of concurrency is the **orthocenter** of the triangle.

The lines containing \overline{AF} , \overline{BD} , and \overline{CE} meet at the orthocenter G of $\triangle ABC$.

Notes:

Extra Practice

In Exercises 1–3, point *P* is the centroid of $\triangle LMN$. Find *PN* and *QP*.

6.3 Notetaking with Vocabulary (continued)

In Exercises 4 and 5, point *D* is the centroid of $\triangle ABC$. Find *CD* and *CE*.

In Exercises 6–8, find the coordinates of the centroid of the triangle with the given vertices.

In Exercises 9–11, tell whether the orthocenter is *inside, on,* or *outside* the triangle. Then find the coordinates of the orthocenter.

9. X(3, 6), Y(3, 0),Z(11, 0)

