\qquad

Bisectors of Triangles

For use with Exploration 6.2

Essential Question What conjectures can you make about the perpendicular bisectors and the angle bisectors of a triangle?

1 EXPLORATION: Properties of the Perpendicular Bisectors of a Triangle

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software. Draw any $\triangle A B C$.
a. Construct the perpendicular bisectors of all three sides of $\triangle A B C$. Then drag the vertices to change $\triangle A B C$. What do you notice about the perpendicular bisectors?
b. Label a point D at the intersection of the perpendicular bisectors.
c. Draw the circle with center D through vertex A of $\triangle A B C$. Then drag the vertices to change $\triangle A B C$. What do you notice?

Sample

Points
$A(1,1)$
$B(2,4)$
$C(6,0)$
Segments
$B C=5.66$
$A C=5.10$
$A B=3.16$
Lines
$x+3 y=9$
$-5 x+y=-17$

2 EXPLORATION: Properties of the Angle Bisectors of a Triangle
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software. Draw any $\triangle A B C$.
a. Construct the angle bisectors of all three angles of $\triangle A B C$. Then drag the vertices to change $\triangle A B C$. What do you notice about the angle bisectors?
\qquad
6.2 Bisectors of Triangles (continued)

2 EXPLORATION: Properties of the Angle Bisectors of a Triangle (continued)
b. Label a point D at the intersection of the angle bisectors.
c. Find the distance between D and $\overline{A B}$. Draw the circle with center D and this distance as a radius. Then drag the vertices to change $\triangle A B C$. What do you notice?

Communicate Your Answer

3. What conjectures can you make about the perpendicular bisectors and the angle bisectors of a triangle?
\qquad

Notetaking with Vocabulary

 For use after Lesson 6.2In your own words, write the meaning of each vocabulary term.
concurrent
point of concurrency
circumcenter
incenter

Theorems

Theorem 6.5 Circumcenter Theorem

The circumcenter of a triangle is equidistant from the vertices of the triangle.

If $\overline{P D}, \overline{P E}$, and $\overline{P F}$ are perpendicular bisectors, then $P A=P B=P C$.

Notes:

\qquad
\qquad

6.2 Notetaking with Vocabulary (continued)

Theorem 6.6 Incenter Theorem

The incenter of a triangle is equidistant from the sides of the triangle.

If $\overline{A P}, \overline{B P}$, and $\overline{C P}$ are angle bisectors of $\triangle A B C$, then $P D=P E=P F$.

Notes:

Extra Practice

In Exercises 1-3, N is the incenter of $\triangle A B C$. Use the given information to find the indicated measure.

1. $N D=2 x-5$
$N E=-2 x+7$
Find $N F$.

2. $\begin{aligned} N G & =x-1 \\ N H & =2 x-6\end{aligned}$

Find $N J$.

3. $N K=x+10$
$N L=-2 x+1$
Find $N M$.

\qquad
\qquad

6.2 Notetaking with Vocabulary (continued)

In Exercises 4-7, find the indicated measure.
4. $P A$
5. $P S$

6. $G E$

7. $N F$

In Exercises 8-10, find the coordinates of the circumcenter of the triangle with the given vertices.
8. $A(-2,-2), B(-2,4), C(6,4)$
9. $D(3,5), E(3,1), F(9,5)$
10. $J(4,-7), K(4,-3), L(-6,-3)$

