6.1

Perpendicular and Angle Bisectors

For use with Exploration 6.1

Essential Question What conjectures can you make about a point on the perpendicular bisector of a segment and a point on the bisector of an angle?

EXPLORATION: Points on a Perpendicular Bisector

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Draw any segment and label it \overline{AB} . Construct the perpendicular bisector of \overline{AB} .
- **b.** Label a point C that is on the perpendicular bisector of \overline{AB} but is not on \overline{AB} .
- **c.** Draw *CA* and *CB* and find their lengths. Then move point *C* to other locations on the perpendicular bisector and note the lengths of \overline{CA} and \overline{CB} .
- **d.** Repeat parts (a)–(c) with other segments. Describe any relationship(s) you notice.

EXPLORATION: Points on an Angle Bisector

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Draw two rays AB and AC to form $\angle BAC$. Construct the bisector of $\angle BAC$.
- **b.** Label a point D on the bisector of $\angle BAC$.

6.1 Perpendicular and Angle Bisectors (continued)

2 **EXPLORATION:** Points on an Angle Bisector (continued)

- **c.** Construct and find the lengths of the perpendicular segments from *D* to the sides of $\angle BAC$. Move point *D* along the angle bisector and note how the lengths change.
- d. Repeat parts (a)–(c) with other angles. Describe any relationship(s) you notice.

Communicate Your Answer

- **3.** What conjectures can you make about a point on the perpendicular bisector of a segment and a point on the bisector of an angle?
- 4. In Exploration 2, what is the distance from point D to \overrightarrow{AB} when the distance from D to \overrightarrow{AC} is 5 units? Justify your answer.

In your own words, write the meaning of each vocabulary term.

equidistant

Theorems

Theorem 6.1 Perpendicular Bisector Theorem

In a plane, if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overrightarrow{CP} is the \perp bisector of \overrightarrow{AB} , then CA = CB.

Notes:

Theorem 6.2 Converse of the Perpendicular Bisector Theorem

In a plane, if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.

If DA = DB, then point D lies on the \perp bisector of \overline{AB} .

Notes:

6.1 Notetaking with Vocabulary (continued)

Theorem 6.3 Angle Bisector Theorem

If a point lies on the bisector of an angle, then it is equidistant from the two sides of the angle.

If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$, then DB = DC.

Notes:

Theorem 6.4 Converse of the Angle Bisector Theorem

If a point is in the interior of an angle and is equidistant from the two sides of the angle, then it lies on the bisector of the angle.

If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and DB = DC, then \overrightarrow{AD} bisects $\angle BAC$.

Notes:

6.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–3, find the indicated measure. Explain your reasoning.

4. Find the equation of the perpendicular bisector of *AB*.

In Exercises 5–7, find the indicated measure. Explain your reasoning.

