\qquad

Essential Question How can you use a coordinate plane to write a proof?

1 EXPLORATION: Writing a Coordinate Proof

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Use dynamic geometry software to draw $\overline{A B}$ with endpoints $A(0,0)$ and $B(6,0)$.
b. Draw the vertical line $x=3$.
c. Draw $\triangle A B C$ so that C lies on the line $x=3$.

Sample

Points
$A(0,0)$
$B(6,0)$
$C(3, y)$
Segments
$A B=6$
Line
$x=3$
d. Use your drawing to prove that $\triangle A B C$ is an isosceles triangle.

2 EXPLORATION: Writing a Coordinate Proof
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Use dynamic geometry software to draw $\overline{A B}$ with endpoints $A(0,0)$ and $B(6,0)$.
b. Draw the vertical line $x=3$.
c. Plot the point $C(3,3)$ and draw $\triangle A B C$. Then use your drawing to prove that $\triangle A B C$ is an isosceles right triangle.
\qquad

5.8 Coordinate Proofs (continued)

2 EXPLORATION: Writing a Coordinate Proof (continued)

Sample

Points
$A(0,0)$
$B(6,0)$
$C(3,3)$
Segments
$A B=6$
$B C=4.24$
$A C=4.24$
Line
$x=3$
d. Change the coordinates of C so that C lies below the x-axis and $\triangle A B C$ is an isosceles right triangle.
e. Write a coordinate proof to show that if C lies on the line $x=3$ and $\triangle A B C$ is an isosceles right triangle, then C must be the point $(3,3)$ or the point found in part (d).

Communicate Your Answer

3. How can you use a coordinate plane to write a proof?
4. Write a coordinate proof to prove that $\triangle A B C$ with vertices $A(0,0), B(6,0)$, and $C(3,3 \sqrt{3})$ is an equilateral triangle.
\qquad

5.8
 Notetaking with Vocabulary
 For use after Lesson 5.8

In your own words, write the meaning of each vocabulary term. coordinate proof

Notes:
\qquad

5.8 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, place the figure in a coordinate plane in a convenient way. Assign coordinates to each vertex. Explain the advantages of your placement.

1. an obtuse triangle with height of 3 units and base of 2 units

2. a rectangle with length of $2 w$

In Exercises 3 and 4, write a plan for the proof.
3. Given Coordinates of vertices of $\triangle O P R$ and $\triangle Q R P$

Proof $\triangle O P R \cong \triangle Q R P$

\qquad

5.8 Notetaking with Vocabulary (continued)

4. Given Coordinates of vertices of $\triangle O A B$ and $\triangle C D B$

Prove B is the midpoint of $\overline{A D}$ and $\overline{O C}$.

5. Graph the triangle with vertices $A(0,0), B(3 m, m)$, and $C(0,3 m)$. Find the length and the slope of each side of the triangle. Then find the coordinates of the midpoint of each side. Is the triangle a right triangle? isosceles? Explain. (Assume all variables are positive.)

6. Write a coordinate proof.

Given Coordinates of vertices of $\triangle O E F$ and $\triangle O G F$
Prove $\triangle O E F \cong \triangle O G F$

