\qquad

5.5
 Proving Triangle Congruence by SSS
 For use with Exploration 5.5

Essential Question What can you conclude about two triangles when you know the corresponding sides are congruent?

1 EXPLORATION: Drawing Triangles

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.
a. Construct circles with radii of 2 units and 3 units centered at the origin. Label the origin A. Then draw $\overline{B C}$ of length 4 units.
b. Move $\overline{B C}$ so that B is on the smaller circle and C is on the larger circle. Then draw $\triangle A B C$.

c. Explain why the side lengths of $\triangle A B C$ are 2,3 , and 4 units.
d. Find $m \angle A, m \angle B$, and $m \angle C$.

e. Repeat parts (b) and (d) several times, moving $\overline{B C}$ to different locations. Keep track of your results by completing the table on the next page. What can you conclude?
\qquad
\qquad
5.5 Proving Triangle Congruence by SSS (continued)

1 EXPLORATION: Drawing Triangles (continued)

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{A B}$	$\boldsymbol{A C}$	$\boldsymbol{B C}$	$\boldsymbol{m} \angle \boldsymbol{A}$	$\boldsymbol{m} \angle \boldsymbol{B}$	$\boldsymbol{m} \angle \boldsymbol{C}$
1.	$(0,0)$			2	3	4			
2.	$(0,0)$			2	3	4			
3.	$(0,0)$			2	3	4			
4.	$(0,0)$			2	3	4			
5.	$(0,0)$				2	3	4		

Communicate Your Answer

2. What can you conclude about two triangles when you know the corresponding sides are congruent?
3. How would you prove your conclusion in Exploration 1(e)?
\qquad

Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
legs
hypotenuse

Theorems

Theorem 5.8 Side-Side-Side (SSS) Congruence Theorem

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

If $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\overline{A C} \cong \overline{D F}$, then
$\triangle A B C \cong \triangle D E F$.
Notes:

Theorem 5.9 Hypotenuse-Leg (HL) Congruence Theorem

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $m \angle C=m \angle F=90^{\circ}$, then
 $\triangle A B C \cong \triangle D E F$.

Notes:

\qquad
\qquad

5.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-4, decide whether the congruence statement is true. Explain your reasoning.

1. $\triangle A B C \cong \triangle E D C$

2. $\triangle K G H \cong \triangle H J K$

3. $\triangle U V W \cong \triangle X Y Z$

4. $\triangle R S T \cong \triangle R P Q$

5. Determine whether the figure is stable. Explain your reasoning.

\qquad

5.5 Notetaking with Vocabulary (continued)

6. Redraw the triangles so they are side by side with corresponding parts in the same position. Then write a proof.

Given $\quad B$ is the midpoint of $\overline{C D}$, $\overline{A B} \cong \overline{E B}, \angle C$ and $\angle D$ are right angles.

Prove $\triangle A B C \cong \triangle E B D$

STATEMENTS	REASONS

7. Write a proof.

Given $\overline{I E} \cong \overline{E J} \cong \overline{J L} \cong \overline{L H} \cong \overline{H K} \cong \overline{K I} \cong$ $\overline{E K} \cong \overline{K F} \cong \overline{F H} \cong \overline{H G} \cong \overline{G L} \cong \overline{L E}$

Prove $\triangle E F G \cong \triangle H I J$

STATEMENTS	REASONS

