Equilateral and Isosceles Triangles 5.4

For use with Exploration 5.4

Essential Question What conjectures can you make about the side lengths and angle measures of an isosceles triangle?

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Construct a circle with a radius of 3 units centered at the origin.
- **b.** Construct $\triangle ABC$ so that B and C are on the circle and A is at the origin.

- c. Recall that a triangle is *isosceles* if it has at least two congruent sides. Explain why $\triangle ABC$ is an isosceles triangle.
- **d.** What do you observe about the angles of $\triangle ABC$?
- e. Repeat parts (a)–(d) with several other isosceles triangles using circles of different radii. Keep track of your observations by completing the table on the next page. Then write a conjecture about the angle measures of an isosceles triangle.

5

EXPLORATION: Writing a Conjecture about Isosceles Triangles (continued)

		А	В	С	AB	AC	вс	m∠A	m∠B	m∠C
Sample	1.	(0, 0)	(2.64, 1.42)	(-1.42, 2.64)	3	3	4.24	90°	45°	45°
	2.	(0, 0)								
	3.	(0, 0)								
	4.	(0, 0)								
	5.	(0, 0)								

f. Write the converse of the conjecture you wrote in part (e). Is the converse true?

Communicate Your Answer

- **2.** What conjectures can you make about the side lengths and angle measures of an isosceles triangle?
- **3.** How would you prove your conclusion in Exploration 1(e)? in Exploration 1(f)?

5.4 Notetaking with Vocabulary For use after Lesson 5.4

In your own words, write the meaning of each vocabulary term.

legs

vertex angle

base

base angles

Theorems

Theorem 5.6 Base Angles Theorem

If two sides of a triangle are congruent, then the angles opposite them are congruent.

If $\overline{AB} \cong \overline{AC}$, then $\angle B \cong \angle C$.

Theorem 5.7 Converse of the Base Angles Theorem

If two angles of a triangle are congruent, then the sides opposite them are congruent.

If $\angle B \cong \angle C$, then $\overline{AB} \cong \overline{AC}$.

Notes:

5.4 Notetaking with Vocabulary (continued)

Corollaries

Corollary 5.2 Corollary to the Base Angles Theorem

If a triangle is equilateral, then it is equiangular.

Corollary 5.3 Corollary to the Converse of the Base Angles Theorem

If a triangle is equiangular, then it is equilateral.

Notes:

Extra Practice

In Exercises 1–4, complete the statement. State which theorem you used.

1. If
$$NJ \cong NM$$
, then $\angle ___ \cong \angle ___$.

2. If $\overline{LM} \cong \overline{LN}$, then $\angle _ \cong \angle _$.

5.4 Notetaking with Vocabulary (continued)

In Exercises 5 and 6, find the value of *x*.

In Exercises 7 and 8, find the values of *x* and *y*.

