5.2 Congruent Polygons For use with Exploration 5.2

Essential Question Given two congruent triangles, how can you use rigid motions to map one triangle to the other triangle?

EXPLORATION: Describing Rigid Motions

Work with a partner. Of the four transformations you studied in Chapter 4, which are rigid motions? Under a rigid motion, why is the image of a triangle always congruent to the original triangle? Explain you reasoning.

Rotation

Translation

Reflection

Dilation

EXPLORATION: Finding a Composition of Rigid Motions

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Describe a composition of rigid motions that maps $\triangle ABC$ to $\triangle DEF$. Use dynamic geometry software to verify your answer.

a.
$$\triangle ABC \cong \triangle DEF$$

b.
$$\triangle ABC \cong \triangle DEF$$

5.2 Congruent Polygons (continued)

EXPLORATION: Finding a Composition of Rigid Motions (continued)

c. $\triangle ABC \cong \triangle DEF$

Communicate Your Answer

3. Given two congruent triangles, how can you use rigid motions to map one triangle to the other triangle?

4. The vertices of △ABC are A(1, 1), B(3, 2), and C(4, 4). The vertices of △DEF are D(2, -1), E(0, 0), and F(-1, 2). Describe a composition of rigid motions that maps △ABC to △DEF.

Date

5.2 Notetaking with Vocabulary For use after Lesson 5.2

In your own words, write the meaning of each vocabulary term.

corresponding parts

Theorems

Theorem 5.3 Properties of Triangle Congruence

Triangle congruence is reflexive, symmetric, and transitive.

Reflexive For any triangle $\triangle ABC$, $\triangle ABC \cong \triangle ABC$.

Symmetric If $\triangle ABC \cong \triangle DEF$, then $\triangle DEF \cong \triangle ABC$.

Transitive If $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle JKL$, then $\triangle ABC \cong \triangle JKL$.

Notes:

Theorem 5.4 Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

Notes:

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\angle C \cong \angle F$.

Name

5.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, identify all pairs of congruent corresponding parts. Then write another congruence statement for the polygons.

In Exercises 3 and 4, find the values of *x* and *y*.

3. $\triangle XYZ \cong \triangle RST$

4. $ABCD \cong EFGH$

Date

5.2 Notetaking with Vocabulary (continued)

In Exercises 5 and 6, show that the polygons are congruent. Explain your reasoning.

In Exercises 7 and 8, find $m \angle 1$.

