4.5 Dilations For use with Exploration 4.5

Essential Question What does it mean to dilate a figure?

EXPLORATION: Dilating a Triangle in a Coordinate Plane

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any triangle and label it $\triangle ABC$.

a. Dilate $\triangle ABC$ using a scale factor of 2 and a center of dilation at the origin to form $\triangle A'B'C'$. Compare the coordinates, side lengths, and angle measures of $\triangle ABC$ and $\triangle A'B'C'$.

b. Repeat part (a) using a *scale factor* of $\frac{1}{2}$.

c. What do the results of parts (a) and (b) suggest about the coordinates, side lengths, and angle measures of the image of $\triangle ABC$ after a dilation with a scale factor of k?

4.5 Dilations (continued)

EXPLORATION: Dilating Lines in a Coordinate Plane

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw \overrightarrow{AB} that passes through the origin and \overrightarrow{AC} that does not pass through the origin.

- **a.** Dilate \overrightarrow{AB} using a scale factor of 3 and a center of dilation at the origin. Describe the image.
- **b.** Dilate \overrightarrow{AC} using a scale factor of 3 and a center of dilation at the origin. Describe the image.

- **c.** Repeat parts (a) and (b) using a scale factor of $\frac{1}{4}$.
- **d.** What do you notice about dilations of lines passing through the center of dilation and dilations of lines not passing through the center of dilation?

Communicate Your Answer

- **3.** What does it mean to dilate a figure?
- **4.** Repeat Exploration 1 using a center of dilation at a point other than the origin.

In your own words, write the meaning of each vocabulary term.

dilation

center of dilation

scale factor

enlargement

reduction

Core Concepts

Dilations

A **dilation** is a transformation in which a figure is enlarged or reduced with respect to a fixed point C called the **center of dilation** and a **scale factor** k, which is the ratio of the lengths of the corresponding sides of the image and the preimage.

A dilation with center of dilation C and scale factor k maps every point P in a figure to a point P' so that the following are true.

- If P is the center point C, then P = P'.
- If *P* is not the center point *C*, then the image point *P'* lies on \overrightarrow{CP} . The scale factor *k* is a positive number such that $k = \frac{CP'}{CP}$.
- Angle measures are preserved.

Notes:

Name_

4.5 Notetaking with Vocabulary (continued)

Coordinate Rule for Dilations

If P(x, y) is the preimage of a point, then its image after a dilation centered at the origin (0, 0) with scale factor k is the point P'(kx, ky).

Notes:

Extra Practice

In Exercises 1–3, find the scale factor of the dilation. Then tell whether the dilation is a *reduction* or an *enlargement*.

In Exercises 4 and 5, graph the polygon and its image after a dilation with scale factor *k*.

4. A(-3, 1), B(-4, -1), C(-2, -1); k = 2

'(kx, ky)

4.5 Notetaking with Vocabulary (continued)

5. $P(-10, 0), Q(-5, 0), R(0, 5), S(-5, 5); k = \frac{1}{5}$

In Exercises 6 and 7, find the coordinates of the image of the polygon after a dilation with scale factor *k*.

- **6.** A(-3, 1), B(-4, -1), C(-2, -1); k = -6
- **7.** P(-8, 4), Q(20, -8), R(16, 4), S(0, 12); k = -0.25
- **8.** You design a poster on an 8.5-inch by 11-inch paper for a contest at your school. The poster of the winner will be printed on a 34-inch by 44-inch canvas to be displayed. What is the scale factor of this dilation?
- **9.** A biology book shows the image of an insect that is 10 times its actual size. The image of the insect is 8 centimeters long. What is the actual length of the insect?