\qquad

Essential Question How can you translate a figure in a coordinate plane?

1 EXPLORATION: Translating a Triangle in a Coordinate Plane

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Use dynamic geometry software to draw any triangle and label it $\triangle A B C$.
b. Copy the triangle and translate (or slide) it to form a new figure, called an image, $\triangle A^{\prime} B^{\prime} C^{\prime}$. (read as "triangle A prime, B prime, C prime").
c. What is the relationship between the coordinates of the vertices of $\triangle A B C$ and those of $\triangle A^{\prime} B^{\prime} C^{\prime}$?
d. What do you observe about the side lengths and angle measures of the two triangles?

Sample

2 EXPLORATION: Translating a Triangle in a Coordinate Plane

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. The point (x, y) is translated a units horizontally and b units vertically. Write a rule to determine the coordinates of the image of (x, y).

$$
(x, y) \rightarrow(\ldots, \ldots)
$$

\qquad

4.1 Translations (continued)

b. Use the rule you wrote in part (a) to translate $\triangle A B C$ 4 units left and 3 units down. What are the coordinates of the vertices of the image, $\Delta A^{\prime} B^{\prime} C^{\prime}$?
c. Draw $\triangle A^{\prime} B^{\prime} C^{\prime}$. Are its side lengths the same as those of $\triangle A B C$? Justify your answer.

3 EXPLORATION: Comparing Angles of Translations

Work with a partner.

a. In Exploration 2, is $\triangle A B C$ a right triangle? Justify your answer.
b. In Exploration 2, is $\Delta A^{\prime} B^{\prime} C^{\prime}$ a right triangle? Justify your answer.
c. Do you think translations always preserve angle measures? Explain your reasoning.

Communicate Your Answer

4. How can you translate a figure in a coordinate plane?
5. In Exploration 2, translate $\Delta A^{\prime} B^{\prime} C^{\prime} 3$ units right and 4 units up. What are the coordinates of the vertices of the image, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$? How are these coordinates related to the coordinates of the vertices of the original triangle, $\triangle A B C$?
\qquad

Notetaking with Vocabulary

For use after Lesson 4.1
In your own words, write the meaning of each vocabulary term.
vector
initial point
terminal point
horizontal component
vertical component
component form
transformation
image
preimage
translation
rigid motion
composition of transformations
\qquad

4.1 Notetaking with Vocabulary (continued)

Core Concepts

Vectors

The diagram shows a vector. The initial point, or starting point, of the vector is P, and the terminal point, or ending point, is Q. The vector is named $\overline{P Q}$, which is read as "vector $P Q$." The horizontal component of $\overline{P Q}$ is 5 , and the vertical component is 3 . The component form of a vector combines the horizontal and vertical components. So, the component form of $\overline{P Q}$ is $\langle 5,3\rangle$.

Notes:

Translations

A translation moves every point of a figure the same distance in the same direction. More specifically, a translation maps, or moves the points P and Q of a plane figure along a vector $\langle a, b\rangle$ to the points P^{\prime} and Q^{\prime}, so that one of the following statements is true.

- $P P^{\prime}=Q Q^{\prime}$ and $\overline{P P^{\prime}} \| \overline{Q Q^{\prime}}$, or

- $P P^{\prime}=Q Q^{\prime}$ and $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are collinear.

Notes:

Extra Practice

In Exercises 1-3, name the vector and write its component form.
1.

2.

3.

\qquad

4.1 Notetaking with Vocabulary (continued)

In Exercises 4-7, the vertices of $\triangle A B C$ are $A(1,2), B(5,1), C(5,4)$.
Translate $\triangle A B C$ using the given vector. Graph $\triangle A B C$ and its image.
4. $\langle-4,0\rangle$
5. $\langle-2,-4\rangle$
6. $\langle 0,-5\rangle$
7. $\langle 1,-3\rangle$

In Exercises 8 and 9, write a rule for the translation of quadrilateral PQRS to quadrilateral $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$.
8.

9.

In Exercises 10 and 11, use the translation.
$(x, y) \rightarrow(x+6, y-3)$
10. What is the image of $J(4,5)$?
11. What is the image of $R^{\prime}(0,-5)$?
12. In a video game, you move a spaceship 1 unit left and 4 units up. Then, you move the spaceship 2 units left. Rewrite the composition as a single transformation.

