1

3.5 Equations of Parallel and Perpendicular Lines For use with Exploration 3.5

Essential Question How can you write an equation of a line that is parallel or perpendicular to a given line and passes through a given point?

EXPLORATION: Writing Equations of Parallel and Perpendicular Lines

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Write an equation of the line that is parallel or perpendicular to the given line and passes through the given point. Use a graphing calculator to verify your answer. What is the relationship between the slopes?

2

EXPLORATION: Writing Equations of Parallel and Perpendicular Lines

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Write the equations of the parallel or perpendicular lines. Use a graphing calculator to verify your answers.

Communicate Your Answer

3. How can you write an equation of a line that is parallel or perpendicular to a given line and passes through a given point?

4. Write an equation of the line that is (a) parallel and (b) perpendicular to the line y = 3x + 2 and passes through the point (1, -2).

Date

3.5 Notetaking with Vocabulary For use after Lesson 3.5

In your own words, write the meaning of each vocabulary term.

directed line segment

Theorems

Theorem 3.13 Slopes of Parallel Lines

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope.

Any two vertical lines are parallel.

Notes:

Theorem 3.14 Slopes of Perpendicular Lines

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

Horizontal lines are perpendicular to vertical lines.

Notes:

3.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, find the coordinates of point *P* along the directed line segment *AB* so that *AP* to *PB* is the given ratio.

1. A(-2, 7), B(-4, 1); 3 to 1

2. A(3, 1), B(8, -2); 2 to 3

3. Determine which of the lines are parallel and which of the lines are perpendicular.

4. Tell whether the lines through the given points are *parallel*, *perpendicular*, or *neither*. Justify your answer.

Line 1: (2, 0), (-2, 2)

Line 2: (1, -2), (4, 4)

3.5 Notetaking with Vocabulary (continued)

5. Write an equation of the line passing through point P(3, -2) that is parallel to $y = \frac{2}{3}x - 1$. Graph the equations of the lines to check that they are parallel.

6. Write an equation of the line passing through point P(-2, 2) that is perpendicular to y = 2x + 3. Graph the equations of the lines to check that they are perpendicular.

7. Find the distance from point A(0, 5) to y = -3x - 5.