3.4

Proofs with Perpendicular Lines For use with Exploration 3.4

Essential Question What conjectures can you make about perpendicular lines?

EXPLORATION: Writing Conjectures

Work with a partner. Fold a piece of paper in half twice. Label points on the two creases, as shown.

a. Write a conjecture about \overline{AB} and \overline{CD} . Justify your conjecture.

b. Write a conjecture about \overline{AO} and \overline{OB} . Justify your conjecture.

EXPLORATION: Exploring a Segment Bisector

Work with a partner. Fold and crease a piece of paper, as shown. Label the ends of the crease as *A* and *B*.

- **a.** Fold the paper again so that point *A* coincides with point *B*. Crease the paper on that fold.
- **b.** Unfold the paper and examine the four angles formed by the two creases. What can you conclude about the four angles?

3.4 Proofs with Perpendicular Lines (continued)

EXPLORATION: Writing a Conjecture

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

a. Draw \overline{AB} , as shown.

- **b.** Draw an arc with center A on each side of \overline{AB} . Using the same compass setting, draw an arc with center B on each side of \overline{AB} . Label the intersections of the arcs C and D.
- **c.** Draw \overline{CD} . Label its intersection with \overline{AB} as O. Write a conjecture about the resulting diagram. Justify your conjecture.

Communicate Your Answer

- 4. What conjectures can you make about perpendicular lines?
- **5.** In Exploration 3, find AO and OB when AB = 4 units.

3.4 Notetaking with Vocabulary For use after Lesson 3.4

In your own words, write the meaning of each vocabulary term.

distance from a point to a line

perpendicular bisector

Theorems

Theorem 3.10 Linear Pair Perpendicular Theorem

If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

If $\angle 1 \cong \angle 2$, then $g \perp h$.

Notes:

Theorem 3.11 Perpendicular Transversal Theorem

In a plane, if a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other line.

If $h \parallel k$ and $j \perp h$, then $j \perp k$.

Notes:

Date

3.4 Notetaking with Vocabulary (continued)

Theorem 3.12 Lines Perpendicular to a Transversal Theorem

In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

If $m \perp p$ and $n \perp p$, then $m \parallel n$.

Notes:

Extra Practice

In Exercises 1–4, find the distance from point A to \overleftarrow{BC} .

3.4 Notetaking with Vocabulary (continued)

In Exercises 5–8, determine which lines, if any, must be parallel. Explain your reasoning.

