2.3 Postulates and Diagrams
For use with Exploration 2.3

Essential Question In a diagram, what can be assumed and what needs to be labeled?

1 EXPLORATION: Looking at a Diagram

Work with a partner. On a piece of paper, draw two perpendicular lines. Label them \(AB \) and \(CD \). Look at the diagram from different angles. Do the lines appear perpendicular regardless of the angle at which you look at them? Describe all the angles at which you can look at the lines and have them appear perpendicular.

2 EXPLORATION: Interpreting a Diagram

Work with a partner. When you draw a diagram, you are communicating with others. It is important that you include sufficient information in the diagram. Use the diagram to determine which of the following statements you can assume to be true. Explain your reasoning.

a. All the points shown are coplanar.

b. Points \(D \), \(G \), and \(I \) are collinear.

c. Points \(A \), \(C \), and \(H \) are collinear.

d. \(\overline{EG} \) and \(\overline{AH} \) are perpendicular.
2.3 Postulates and Diagrams (continued)

EXPLORATION: Interpreting a Diagram (continued)

e. $\angle BCA$ and $\angle ACD$ are a linear pair.

f. \overrightarrow{AF} and \overrightarrow{BD} are perpendicular.

g. \overrightarrow{EG} and \overrightarrow{BD} are parallel.

h. \overrightarrow{AF} and \overrightarrow{BD} are coplanar.

i. \overrightarrow{EG} and \overrightarrow{BD} do not intersect.

j. \overrightarrow{AF} and \overrightarrow{BD} intersect.

k. \overrightarrow{EG} and \overrightarrow{BD} are perpendicular.

l. $\angle ACD$ and $\angle BCF$ are vertical angles.

m. \overrightarrow{AC} and \overrightarrow{FH} are the same line.

Communicate Your Answer

3. In a diagram, what can be assumed and what needs to be labeled?

4. Use the diagram in Exploration 2 to write two statements you can assume to be true and two statements you cannot assume to be true. Your statements should be different from those given in Exploration 2. Explain your reasoning.
2.3 Notetaking with Vocabulary

For use after Lesson 2.3

In your own words, write the meaning of each vocabulary term.

line perpendicular to a plane

Postulates

Point, Line, and Plane Postulates

<table>
<thead>
<tr>
<th>Postulate</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Two Point Postulate</td>
<td>Through points A and B, there is exactly one line ℓ. Line ℓ contains at least two points.</td>
</tr>
<tr>
<td>2.2 Line-Point Postulate</td>
<td>A line contains at least two points.</td>
</tr>
<tr>
<td>2.3 Line Intersection Postulate</td>
<td>The intersection of line m and line n is point C.</td>
</tr>
<tr>
<td>2.4 Three Point Postulate</td>
<td>Through points D, E, and F, there is exactly one plane, plane R. Plane R contains at least three noncollinear points.</td>
</tr>
<tr>
<td>2.5 Plane-Point Postulate</td>
<td>A plane contains at least three noncollinear points.</td>
</tr>
</tbody>
</table>

Notes:
2.3 Notetaking with Vocabulary (continued)

Point, Line, and Plane Postulates (continued)

<table>
<thead>
<tr>
<th>Postulate</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6 Plane-Line Postulate</td>
<td>Points D and E lie in plane R, so \overline{DE} lies in plane R.</td>
</tr>
<tr>
<td>2.7 Plane Intersection Postulate</td>
<td>The intersection of plane S and plane T is line ℓ.</td>
</tr>
</tbody>
</table>

Notes:

Extra Practice

In Exercises 1 and 2, state the postulate illustrated by the diagram.

1. If A, B, and C are points, then

2. If S, M, and L are planes, then
2.3 Notetaking with Vocabulary (continued)

In Exercises 3–6, use the diagram to write an example of the postulate.

3. Two Point Postulate (Postulate 2.1)

4. Line-Point Postulate (Postulate 2.2)

5. Plane-Point Postulate (Postulate 2.5)

6. Plane Intersection Postulate (Postulate 2.7)

In Exercises 7 and 8, sketch a diagram of the description.

7. \(RS \) bisecting \(KL \) at point \(R \)

8. \(AB \) in plane \(U \) intersecting \(CD \) at point \(E \), and point \(C \) not on plane \(U \)

In Exercises 9–14, use the diagram to determine whether you can assume the statement.

9. Planes \(A \) and \(B \) intersect at \(EF \).

10. Points \(C \) and \(D \) are collinear.

11. \(HJ \) and \(ID \) are perpendicular.

12. \(GD \) is a bisector of \(EF \) at point \(D \).

13. \(IH \cong HG \)

14. \(\angle HJD \) and \(\angle HDJ \) are complementary angles.