\qquad

2.1 Conditional Statements
 For use with Exploration 2.1

Essential Question When is a conditional statement true or false?

A conditional statement, symbolized by $p \rightarrow q$, can be written as an "if-then statement" in which p is the hypothesis and q is the conclusion. Here is an example.

If a polygon is a triangle, then the sum of its angle measures is 180°. hypothesis, p
conclusion, q

1 EXPLORATION: Determining Whether a Statement Is True or False

Work with a partner. A hypothesis can either be true or false. The same is true of a conclusion. For a conditional statement to be true, the hypothesis and conclusion do not necessarily both have to be true. Determine whether each conditional statement is true or false. Justify your answer.
a. If yesterday was Wednesday, then today is Thursday.
b. If an angle is acute, then it has a measure of 30°.
c. If a month has 30 days, then it is June.
d. If an even number is not divisible by 2 , then 9 is a perfect cube.

2 EXPLORATION: Determining Whether a Statement Is True or False?

Work with a partner. Use the points in the coordinate plane to determine whether each statement is true or false. Justify your answer.
a. $\triangle A B C$ is a right triangle.

\qquad

2.1 Conditional Statements (continued)

2 EXPLORATION: Determining Whether a Statement Is True or False (continued)

b. $\triangle B D C$ is an equilateral triangle.
c. $\triangle B D C$ is an isosceles triangle.
d. Quadrilateral $A B C D$ is a trapezoid.
e. Quadrilateral $A B C D$ is a parallelogram.

3 EXPLORATION: Determining Whether a Statement Is True or False

Work with a partner. Determine whether each conditional statement is true or false. Justify your answer.
a. If $\triangle A D C$ is a right triangle, then the Pythagorean Theorem is valid for $\triangle A D C$.
b. If $\angle A$ and $\angle B$ are complementary, then the sum of their measures is 180°.
c. If figure $A B C D$ is a quadrilateral, then the sum of its angle measures is 180°.
d. If points A, B, and C are collinear, then they lie on the same line.
e. If $\overrightarrow{A B}$ and $\overleftrightarrow{B D}$ intersect at a point, then they form two pairs of vertical angles.

Communicate Your Answer

4. When is a conditional statement true or false?
5. Write one true conditional statement and one false conditional statement that are different from those given in Exploration 3. Justify your answer.
\qquad
2.1

Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
conditional statement
if-then form
hypothesis
conclusion
negation
converse
inverse
contrapositive
equivalent statements
perpendicular lines
biconditional statement
truth value
truth table
\qquad

2.1 Notetaking with Vocabulary (continued)

Core Concepts

Conditional Statement

A conditional statement is a logical statement that has two parts, a hypothesis p and a conclusion q. When a conditional statement is written in if-then form, the "if" part contains the hypothesis and the "then" part contains the conclusion.

Words If p, then q. Symbols $\quad p \rightarrow q$ (read as " p implies q ")

Notes:

Negation

The negation of a statement is the opposite of the original statement. To write the negation of a statement p, you write the symbol for negation (\sim) before the letter. So, "not p " is written $\sim p$.
Words $\quad \operatorname{not} p$
Symbols $\sim p$

Notes:

Related Conditionals

Consider the conditional statement below.

Words	If p, then q.	Symbols	$p \rightarrow q$
Converse	To write the converse of a conditional statement, exchange the hypothesis and the conclusion.		
Words	If q, then p.	Symbols	$q \rightarrow p$
Inverse	To write the inverse of a conditional statement, negate both the hypothesis and the conclusion.		
Words	If not p, then not q.	Symbols	$\sim p \rightarrow \sim q$

\qquad
2.1 Notetaking with Vocabulary (continued)

Related Conditionals (continued)

Contrapositive To write the contrapositive of a conditional statement, first write the converse. Then negate both the hypothesis and the conclusion.

Words
If not q, then not $p . \quad$ Symbols $\quad \sim q \rightarrow \sim p$

A conditional statement and its contrapositive are either both true or both false. Similarly, the converse and inverse of a conditional statement are either both true or both false. In general, when two statements are both true or both false, they are called equivalent statements.

Notes:

Biconditional Statement

When a conditional statement and its converse are both true, you can write them as a single biconditional statement. A biconditional statement is a statement that contains the phrase "if and only if."

Words $\quad p$ if and only if $q \quad$ Symbols $\quad p \leftrightarrow q$

Any definition can be written as a biconditional statement.

Notes:

\qquad
\qquad

2.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, rewrite the conditional statement in if-then form.

1. $13 x-5=-18$, because $x=-1$.
2. The sum of the measures of interior angles of a triangle is 180°.
3. Let p be "Quadrilateral $A B C D$ is a rectangle" and let q be "the sum of the angle measures is 360°." Write the conditional statement $p \rightarrow q$, the converse $q \rightarrow p$, the inverse $\sim p \rightarrow \sim q$, and the contrapositive $\sim q \rightarrow \sim p$ in words. Then decide whether each statement is true or false.

In Exercises 4-6, decide whether the statement about the diagram is true. Explain your answer using the definitions you have learned.
4. $\overline{L M}$ bisects $\overline{J K}$
5. $\angle J R P$ and $\angle P R L$ are complementary.

6. $\angle M R Q \cong \angle P R L$

