9.

Using Trigonometric Identities

For use with Exploration 9.7

Essential Question How can you verify a trigonometric identity?

EXPLORATION: Writing a Trigonometric Identity

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. In the figure, the point (x, y) is on a circle of radius *c* with center at the origin.

a. Write an equation that relates *a*, *b*, and *c*.

- **b.** Write expressions for the sine and cosine ratios of angle θ .
- **c.** Use the results from parts (a) and (b) to find the sum of $\sin^2 \theta$ and $\cos^2 \theta$. What do you observe?
- **d.** Complete the table to verify that the identity you wrote in part (c) is valid for angles (of your choice) in each of the four quadrants.

	θ	sin²θ	$\cos^2 \theta$	$\sin^2\theta + \cos^2\theta$
QI				
QII				
QIII				
QIV				

9.7 Using Trigonometric Identities (continued)

EXPLORATION: Writing Other Trigonometric Identities

Work with a partner. The trigonometric identity you derived in Exploration 1 is called a Pythagorean identity. There are two other Pythagorean identities. To derive them, recall the four relationships:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta} \qquad \qquad \qquad \csc \theta = \frac{1}{\sin \theta}$$

- **a.** Divide each side of the Pythagorean identity you derived in Exploration 1 by $\cos^2 \theta$ and simplify. What do you observe?
- **b.** Divide each side of the Pythagorean identity you derived in Exploration 1 by $\sin^2 \theta$ and simplify. What do you observe?

Communicate Your Answer

- 3. How can you verify a trigonometric identity?
- **4.** Is sin $\theta = \cos \theta$ a trigonometric identity? Explain your reasoning.
- **5.** Give some examples of trigonometric identities that are different than those in Explorations 1 and 2.

9.7

Notetaking with Vocabulary

For use after Lesson 9.7

In your own words, write the meaning of each vocabulary term.

trigonometric identity

Core Concepts

Fundamental Trigonometric Identities

Reciprocal Identities

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

Tangent and Cotangent Identities

$\tan \theta = \frac{\sin \theta}{2}$	$\cot \theta = \cos \theta$
$\tan \theta = \frac{1}{\cos \theta}$	$ \cos \theta = \frac{1}{\sin \theta} $

Pythagorean Identities

$\sin^2\theta + \cos^2\theta = 1$	$1 + \tan^2 \theta = \sec^2 \theta$	$1 + \cot^2 \theta = \csc^2 \theta$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \qquad \qquad \tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

Negative Angle Identities

	$\sin(-\theta) = -\sin\theta$	$\cos(-\theta) = \cos\theta$	$\tan(-\theta) = -\tan\theta$
--	-------------------------------	------------------------------	-------------------------------

Notes:

9.7 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–4, find the values of the other five trigonometric functions of θ .

1.
$$\sin \theta = \frac{1}{5}, \frac{\pi}{2} < \theta < \pi$$
 2. $\cos \theta = -\frac{4}{5}, \pi < \theta < \frac{3\pi}{2}$

3.
$$\cot \theta = \frac{4}{7}, 0 < \theta < \frac{\pi}{2}$$
 4. $\sec \theta = \frac{\sqrt{13}}{3}, \frac{3\pi}{2} < \theta < 2\pi$

In Exercises 5–8, simplify the expression.

5.
$$-\frac{\tan\theta}{\sec\theta}$$
 6. $\cos\left(\frac{\pi}{2}-\theta\right)(1-\cos^2\theta)$

9.7 Notetaking with Vocabulary (continued)

7.
$$\frac{2 \sec^2 x - 2 \tan^2 x}{\tan(-x) \cos(-x)}$$
8.
$$\frac{-\sin\left(\frac{\pi}{2} - \theta\right)}{\sec(-\theta)} - \sin^2 \theta$$

In Exercises 9 and 10, verify the identity.

9.
$$\frac{1-\cos^2\theta}{\sec^2\theta} - \sin^2\theta = -\sin^4\theta$$
 10. $\csc x + \cot x = \frac{\sin x}{1-\cos x}$