9.6

## **Modeling with Trigonometric Functions** For use with Exploration 9.6

Essential Question What are the characteristics of the real-life problems that can be modeled by trigonometric functions?



### **EXPLORATION:** Modeling Electric Currents

Work with a partner. Find a sine function that models the electric current shown in each oscilloscope screen. State the amplitude and period of the graph.









d.



## 9.6 Modeling with Trigonometric Functions (continued)







## Communicate Your Answer

**2.** What are the characteristics of the real-life problems that can be modeled by trigonometric functions?

**3.** Use the Internet or some other reference to find examples of real-life situations that can be modeled by trigonometric functions.

# 9.6 Notetaking with Vocabulary For use after Lesson 9.6

In your own words, write the meaning of each vocabulary term.

frequency

sinusoid

Notes:

## 9.6 Notetaking with Vocabulary (continued)

### **Extra Practice**

An alternating current generator (AC generator) converts motion to electricity by generating sinusoidal voltage. Assuming that there is no vertical offset and phase shift, the voltage oscillates between -170 volts and +170 volts with a frequency of 60 hertz. Write and graph a sine model that gives the voltage V as a function of the time t (in seconds).

#### In Exercises 2–5, write a function for the sinusoid.





### 9.6 Notetaking with Vocabulary (continued)



6. The pedal of a bicycle wheel is 7 inches long. The lowest point of the pedal is 4 inches above the ground. A cyclist pedals 3 revolutions per second. Write a model for the height h (in inches) of the pedal as a function of the time t (in seconds) given that the pedal is at its lowest point when t = 0.

7. The London Eye, the tallest Ferris wheel in Europe, has a diameter of 120 meters and the whole structure is 135 meters tall. The Ferris wheel completes one revolution in about 30 minutes. Write a model for the height h (in meters) of a passenger capsule as a function of the time t (in seconds) given that the capsule is at its highest point when t = 0.