\qquad
\qquad

9.5
 Graphing Other Trigonometric Functions
 For use with Exploration 9.5

Essential Question What are the characteristics of the graph of the tangent function?

1 EXPLORATION: Graphing the Tangent Function
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Complete the table for $y=\tan x$, where x is an angle measure in radians.

\boldsymbol{x}	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\boldsymbol{y}=\tan \boldsymbol{x}$									
\boldsymbol{x}	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$
$\boldsymbol{y = \operatorname { t a n }} \boldsymbol{x}$									

b. The graph of $y=\tan x$ has vertical asymptotes at x-values where $\tan x$ is undefined. Plot the points (x, y) from part (a). Then use the asymptotes to sketch the graph of $y=\tan x$.

\qquad

9.5 Graphing Other Trigonometric Functions (continued)

1 EXPLORATION: Graphing the Tangent Function (continued)
c. For the graph of $y=\tan x$, identify the asymptotes, the x-intercepts, and the intervals for which the function is increasing or decreasing over $-\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$. Is the tangent function even, odd, or neither?

Communicate Your Answer

2. What are the characteristics of the graph of the tangent function?
3. Describe the asymptotes of the graph of $y=\cot x$ on the interval $-\frac{\pi}{2}<x<\frac{3 \pi}{2}$.
\qquad

9.5
 Notetaking with Vocabulary
 For use after Lesson 9.5

In your own words, write the meaning of each vocabulary term.
asymptote
period
amplitude
x-intercept
transformations

Core Concepts

Characteristics of $y=\tan x$ and $y=\cot x$

The functions $y=\tan x$ and $y=\cot x$ have the following characteristics.

- The domain of $y=\tan x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these x-values, the graph has vertical asymptotes.
- The domain of $y=\cot x$ is all real numbers except multiples of π. At these x-values, the graph has vertical asymptotes.
- The range of each function is all real numbers. So, the functions do not have maximum or minimum values, and the graphs do not have an amplitude.
- The period of each graph is π.
- The x-intercepts for $y=\tan x$ occur when $x=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$.
- The x-intercepts for $y=\cot x$ occur when $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \pm \frac{7 \pi}{2}, \ldots$

Notes:
\qquad

9.5 Notetaking with Vocabulary (continued)

Period and Vertical Asymptotes of $y=a \tan b x$ and $y=a \cot b x$

The period and vertical asymptotes of the graphs of $y=a \tan b x$ and $y=a \cot b x$, where a and b are nonzero real numbers, are as follows.

- The period of the graph of each function is $\frac{\pi}{|b|}$.
- The vertical asymptotes for $y=a \tan b x$ are at odd multiples of $\frac{\pi}{2|b|}$.
- The vertical asymptotes for $y=a \cot b x$ are at multiples of $\frac{\pi}{|b|}$.

Notes:

Characteristics of $y=\sec x$ and $y=\csc x$

The functions $y=\sec x$ and $y=\csc x$ have the following characteristics.

- The domain of $y=\sec x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these x-values, the graph has vertical asymptotes.
- The domain of $y=\csc x$ is all real numbers except multiples of π. At these x-values, the graph has vertical asymptotes.
- The range of each function is $y \leq-1$ and $y \geq 1$. So, the graphs do not have an amplitude.
- The period of each graph is 2π.

Notes:

\qquad
\qquad
9.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-6, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

1. $g(x)=\tan 2 x$

2. $g(x)=2 \cot \frac{1}{2} x$

3. $g(x)=\frac{1}{4} \tan \frac{\pi}{4} x$

4. $g(x)=\frac{1}{2} \cot 3 x$

5. $g(x)=\csc 2 \pi x$

