8.5 Using Recursive Rules with Sequences For use with Exploration 8.5

Essential Question How can you define a sequence recursively?

A **recursive rule** gives the beginning term(s) of a sequence and a *recursive equation* that tells how a_n is related to one or more preceding terms.

1 EXPLORATION: Evaluating a Recursive Rule

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use each recursive rule and a spreadsheet to write the first six terms of the sequence. Classify the sequence as arithmetic, geometric, or neither. Explain your reasoning. (The figure shows a partially completed spreadsheet for part (a).)

a.
$$a_1 = 7, a_n = a_{n-1} + 3$$

	А	В	
1	n	nth Term	
2	1	7	(P2+2)
3	2	10 -	UZ+J
4	3		
5	4		
6	5		
7	6		

b.
$$a_1 = 5, a_n = a_{n-1} - 2$$

c.
$$a_1 = 1, a_n = 2a_{n-1}$$
 d. $a_1 = 1, a_n = \frac{1}{2}(a_{n-1})^2$

e.
$$a_1 = 3, a_n = a_{n-1} + 1$$

f. $a_1 = 4, a_n = \frac{1}{2}a_{n-1} - 1$

g.
$$a_1 = 4, a_n = \frac{1}{2}a_{n-1}$$
 h. $a_1 = 4, a_2 = 5, a_n = a_{n-1} + a_{n-2}$

3

8.5 Using Recursive Rules with Sequences (continued)

EXPLORATION: Writing a Recursive Rule

Work with a partner. Write a recursive rule for the sequence. Explain your reasoning.

a.	3, 6, 9, 12, 15, 18,	b.	18, 14, 10, 6, 2, -2,
c.	3, 6, 12, 24, 48, 96,	d.	128, 64, 32, 16, 8, 4,
e.	5, 5, 5, 5, 5, 5,	f.	1, 1, 2, 3, 5, 8,

EXPLORATION: Writing a Recursive Rule

Work with a partner. Write a recursive rule for the sequence whose graph is shown.

Communicate Your Answer

- 4. How can you define a sequence recursively?
- **5.** Write a recursive rule that is different from those in Explorations 1–3. Write the first six terms of the sequence. Then graph the sequence and classify it as arithmetic, geometric, or neither.

8.5 Notetaking with Vocabulary For use after Lesson 8.5

In your own words, write the meaning of each vocabulary term.

explicit rule

recursive rule

Core Concepts

Recursive Equations for Arithmetic and Geometric Sequences

Arithmetic Sequence

 $a_n = a_{n-1} + d$, where *d* is the common difference

Geometric Sequence

 $a_n = r \bullet a_{n-1}$, where *r* is the common ratio

Notes:

8.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, write the first six terms of the sequence.

1.
$$a_1 = 2$$

 $a_n = a_{n-1} + 5$
2. $f(0) = 1$
 $f(n) = 2f(n-1)$

In Exercises 3–6, write a recursive rule for the sequence.

3.	9, 12, 15, 18, 21,	4.	$50, 20, 8, \frac{16}{5},$	$\frac{32}{25}, \dots$
			3	20

5. 3, 4, 1, -3, -4, ...

6. 1, 1, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{15}$, ...

8.5 Notetaking with Vocabulary (continued)

In Exercises 7–10, write a recursive rule for the sequence.

7.
$$a_n = 5 - 3n$$
 8. $a_n = 10(-2)^{n-1}$

9.
$$a_n = -1 + 8n$$
 10. $a_n = -3\left(\frac{3}{4}\right)^{n-1}$

In Exercises 11–14, write an explicit rule for each sequence.

11. $a_1 = -1, a_n = a_{n-1} + 7$ **12.** $a_1 = 24, a_n = 0.2a_{n-1}$

13.
$$a_1 = 1, a_n = a_{n-1} - 0.3$$
 14. $a_1 = -2, a_n = -5a_{n-1}$