1

8.4

В

1

0.5

0.25

0.125

0.0625

0.03125

А

1

2

3

4

5

6

7

8

9

10

11 12 13

1

2

З

4

5

6

7

8

9

10

11

## **Finding Sums of Infinite Geometric Series** For use with Exploration 8.4

**Essential Question** How can you find the sum of an infinite geometric series?

### **EXPLORATION:** Finding Sums of Infinite Geometric Series

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Enter each geometric series in a spreadsheet. Then use the spreadsheet to determine whether the infinite geometric series has a finite sum. If it does, find the sum. Explain your reasoning. (The figure shows a partially completed spreadsheet for part (a).)

**a.** 
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

.

**b.** 
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots$$

**c.** 
$$1 + \frac{3}{2} + \frac{9}{4} + \frac{27}{8} + \frac{81}{16} + \cdots$$

**d.** 
$$1 + \frac{5}{4} + \frac{25}{16} + \frac{125}{64} + \frac{625}{256} + \cdots$$

| e. | 4      | 16               | 64    | + 256 +           |       |
|----|--------|------------------|-------|-------------------|-------|
|    | 1 + -5 | $+ \frac{1}{25}$ | + 125 | $+ \frac{1}{625}$ | - ••• |

|               | 12 |
|---------------|----|
|               | 13 |
| 14            | 14 |
| 15            | 15 |
| 16 <b>Sum</b> |    |
| •••           |    |
|               |    |
|               |    |

**f.** 
$$1 + \frac{9}{10} + \frac{81}{100} + \frac{729}{1000} + \frac{6561}{10,000} + \cdots$$

#### 8.4 Finding Sums of Infinite Geometric Series (continued)

# 2

#### **EXPLORATION:** Writing a Conjecture

**Work with a partner.** Look back at the infinite geometric series in Exploration 1. Write a conjecture about how you can determine whether the infinite geometric series

 $a_1 + a_1r + a_1r^2 + a_1r^3 + \cdots$ 

has a finite sum.

#### **EXPLORATION:** Writing a Formula

Work with a partner. In Lesson 8.3, you learned that the sum of the first *n* terms of a geometric series with first term  $a_1$  and common ratio  $r \neq 1$  is

$$S_n = a_1 \left( \frac{1 - r^n}{1 - r} \right).$$

When an infinite geometric series has a finite sum, what happens to  $r^n$  as *n* increases? Explain your reasoning. Write a formula to find the sum of an infinite geometric series. Then verify your formula by checking the sums you obtained in Exploration 1.

### **Communicate Your Answer**

4. How can you find the sum of an infinite geometric series?

5. Find the sum of each infinite geometric series, if it exists.

**a.** 1 + 0.1 + 0.01 + 0.001 + 0.0001 + ...   
**b.** 2 + 
$$\frac{4}{3}$$
 +  $\frac{8}{9}$  +  $\frac{16}{27}$  +  $\frac{32}{81}$  + ...

## 8.4 Notetaking with Vocabulary For use after Lesson 8.4

In your own words, write the meaning of each vocabulary term.

partial sum

## Core Concepts

### The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term  $a_1$  and common ratio r is given by

$$S = \frac{a_1}{1-r}$$

provided |r| < 1. If  $|r| \ge 1$ , then the series has no sum.

Notes:

8.4

Notetaking with Vocabulary (continued)

#### **Extra Practice**

In Exercises 1 and 2, consider the infinite geometric series. Find and graph the partial sums  $S_n$  for n = 1, 2, 3, 4, and 5. Then describe what happens to  $S_n$  as n increases.

**1.** 
$$\frac{1}{4} + \frac{1}{6} + \frac{1}{9} + \frac{2}{27} + \frac{4}{81} + \cdots$$



**2.** 
$$3 + \frac{3}{5} + \frac{3}{25} + \frac{3}{125} + \frac{3}{625} + \cdots$$

## 8.4 Notetaking with Vocabulary (continued)

In Exercises 3–6, find the sum of the infinite geometric series, if it exists.



**7.** A child pushes a tumbler toy and lets it swing freely. On the first swing, the toy travels 30 centimeters. On each successive swing, the toy travels 75% of the distance of the previous swing. What is the total distance the toy swings?

8. Write 0.121212... as a fraction in simplest form.