8.3 Analyzing Geometric Sequences and Series For use with Exploration 8.3

Essential Question How can you recognize a geometric sequence from its graph?

In a **geometric sequence**, the ratio of any term to the previous term, called the *common ratio*, is constant. For example, in the geometric sequence 1, 2, 4, 8, ..., the common ratio is 2.

EXPLORATION: Recognizing Graphs of Geometric Sequences

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Determine whether each graph shows a geometric sequence. If it does, then write a rule for the *n*th term of the sequence and use a spreadsheet to find the sum of the first 20 terms. What do you notice about the graph of a geometric sequence?

8.3 Analyzing Geometric Sequences and Series (continued)

EXPLORATION: Finding the Sum of a Geometric Sequence

Work with a partner. You can write the *n*th term of a geometric sequence with first term a_1 and common ratio *r* as

 $a_n = a_1 r^{n-1}.$

So, you can write the sum S_n of the first *n* terms of a geometric sequence as

 $S_n = a_1 + a_1r + a_1r^2 + a_1r^3 + \dots + a_1r^{n-1}.$

Rewrite this formula by finding the difference $S_n - rS_n$ and solve for S_n . Then verify your rewritten formula by finding the sums of the first 20 terms of the geometric sequences in Exploration 1. Compare your answers to those you obtained using a spreadsheet.

Communicate Your Answer

- 3. How can you recognize a geometric sequence from its graph?
- 4. Find the sum of the terms of each geometric sequence.
 - **a.** 1, 2, 4, 8, ..., 8192

b. 0.1, 0.01, 0.001, 0.0001, ..., 10^{-10}

8.3 Notetaking with Vocabulary For use after Lesson 8.3

In your own words, write the meaning of each vocabulary term.

geometric sequence

common ratio

geometric series

Core Concepts

Rule for a Geometric Sequence

Algebra	The <i>n</i> th term of a geometric sequence with first term a_1 and common
	ratio <i>r</i> is given by:

 $a_n = a_1 r^{n-1}$

Example The *n*th term of a geometric sequence with a first term of 2 and a common ratio of 3 is given by:

$$a_n = 2(3)^{n-1}$$

Notes:

The Sum of a Finite Geometric Series

The sum of the first *n* terms of a geometric series with common ratio $r \neq 1$ is

$$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right).$$

Notes:

8.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–4, tell whether the sequence is geometric. Explain your reasoning.

1. 4, 12, 36, 108, 324, ... **2.** 45, 40, 35, 30, 25, ...

3. 1.3, 7.8, 46.8, 280.8, 1684.8, ... **4.**
$$\frac{3}{2}, -\frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, \frac{3}{32}, ...$$

In Exercises 5–8, write a rule for the *n*th term of the sequence. Then find a_6 .

5. 6, 18, 54, 162,	6. 3, -6, 12, -24,
---------------------------	---------------------------

7. $1, \frac{5}{2}, \frac{25}{4}, \frac{125}{8}, \dots$ **8.** $-2.4, -16.8, -117.6, -823.2, \dots$

8.3 Notetaking with Vocabulary (continued)

9. Write a rule for the *n*th term where $a_8 = 384$ and r = 2. Then graph the first six terms of the sequence.

In Exercises 10 and 11, write a rule for the *n*th term of the geometric sequence.

10.
$$a_3 = 54, a_6 = 1458$$
 11. $a_2 = -2, a_5 = \frac{2}{125}$

12. Find the sum
$$\sum_{i=0}^{10} 3\left(\frac{3}{2}\right)^{i-1}$$
.