\qquad
\qquad
8.3

Analyzing Geometric Sequences and Series

For use with Exploration 8.3

Essential Question How can you recognize a geometric sequence from its graph?

In a geometric sequence, the ratio of any term to the previous term, called the common ratio, is constant. For example, in the geometric sequence $1,2,4,8, \ldots$, the common ratio is 2 .

1 EXPLORATION: Recognizing Graphs of Geometric Sequences

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Determine whether each graph shows a geometric sequence. If it does, then write a rule for the nth term of the sequence and use a spreadsheet to find the sum of the first 20 terms. What do you notice about the graph of a geometric sequence?
a.

b.

c.

d.

\qquad
8.3 Analyzing Geometric Sequences and Series (continued)

2 EXPLORATION: Finding the Sum of a Geometric Sequence

Work with a partner. You can write the nth term of a geometric sequence with first term a_{1} and common ratio r as

$$
a_{n}=a_{1} r^{n-1} .
$$

So, you can write the sum S_{n} of the first n terms of a geometric sequence as

$$
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}
$$

Rewrite this formula by finding the difference $S_{n}-r S_{n}$ and solve for S_{n}. Then verify your rewritten formula by finding the sums of the first 20 terms of the geometric sequences in Exploration 1. Compare your answers to those you obtained using a spreadsheet.

Communicate Your Answer

3. How can you recognize a geometric sequence from its graph?
4. Find the sum of the terms of each geometric sequence.
a. $1,2,4,8, \ldots, 8192$
b. $0.1,0.01,0.001,0.0001, \ldots, 10^{-10}$
\qquad

8.3
 Notetaking with Vocabulary
 For use after Lesson 8.3

In your own words, write the meaning of each vocabulary term.
geometric sequence
common ratio
geometric series

Core Concepts

Rule for a Geometric Sequence

Algebra The nth term of a geometric sequence with first term a_{1} and common ratio r is given by:

$$
a_{n}=a_{1} r^{n-1}
$$

Example The nth term of a geometric sequence with a first term of 2 and a common ratio of 3 is given by:

$$
a_{n}=2(3)^{n-1}
$$

Notes:

The Sum of a Finite Geometric Series

The sum of the first n terms of a geometric series with common ratio $r \neq 1$ is

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

Notes:

\qquad
\qquad

8.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-4, tell whether the sequence is geometric. Explain your reasoning.

1. $4,12,36,108,324, \ldots$
2. $45,40,35,30,25, \ldots$
3. $1.3,7.8,46.8,280.8,1684.8, \ldots$
4. $\frac{3}{2},-\frac{3}{4}, \frac{3}{8},-\frac{3}{16}, \frac{3}{32}, \ldots$

In Exercises 5-8, write a rule for the \boldsymbol{n} th term of the sequence. Then find $\mathbf{a}_{\mathbf{6}}$.
5. $6,18,54,162, \ldots$
6. $3,-6,12,-24, \ldots$
7. $1, \frac{5}{2}, \frac{25}{4}, \frac{125}{8}, \ldots$
8. $-2.4,-16.8,-117.6,-823.2, \ldots$
\qquad
\qquad

8.3 Notetaking with Vocabulary (continued)

9. Write a rule for the nth term where $a_{8}=384$ and $r=2$. Then graph the first six terms of the sequence.

In Exercises 10 and 11, write a rule for the nth term of the geometric sequence.
10. $a_{3}=54, a_{6}=1458$
11. $a_{2}=-2, a_{5}=\frac{2}{125}$
12. Find the sum $\sum_{i=0}^{10} 3\left(\frac{3}{2}\right)^{i-1}$.

