\qquad
\qquad
8.1

Defining and Using Sequences and Series

For use with Exploration 8.1
Essential Question How can you write a rule for the nth term of a sequence?

A sequence is an ordered list of numbers. There can be a limited number or an infinite number of terms of a sequence.

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots \quad \text { Terms of a sequence }
$$

Here is an example.

$$
1,4,7,10, \ldots, 3 n-2, \ldots
$$

1 EXPLORATION: Writing Rules for Sequences

Work with a partner. Match each sequence with its graph on the next page. The horizontal axes represent n, the position of each term in the sequence. Then write a rule for the nth term of the sequence, and use the rule to find a_{10}.
a. $1,2.5,4,5.5,7, \ldots$
b. $8,6.5,5,3.5,2, \ldots$
c. $\frac{1}{4}, \frac{4}{4}, \frac{9}{4}, \frac{16}{4}, \frac{25}{4}, \ldots$
d. $\frac{25}{4}, \frac{16}{4}, \frac{9}{4}, \frac{4}{4}, \frac{1}{4}, \ldots$
e. $\frac{1}{2}, 1,2,4,8, \ldots$
f. $8,4,2,1, \frac{1}{2}, \ldots$
\qquad

8.1 Defining and Using Sequences and Series (continued)

1 EXPLORATION: Writing Rules for Sequences (continued)
A.

B.

C.

D.

E.

F.

Communicate Your Answer

2. How can you write a rule for the nth term of a sequence?
3. What do you notice about the relationship between the terms in (a) an arithmetic sequence and (b) a geometric sequence? Justify your answers.
\qquad

Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
sequence
terms of a sequence
series
summation notation
sigma notation

Core Concepts

Sequences

A sequence is an ordered list of numbers. A finite sequence is a function that has a limited number of terms and whose domain is the finite set $\{1,2,3, \ldots, n\}$. The values in the range are called the terms of the sequence.

Domain:	1	2	3	4	\ldots	n	Relative position of each term
	\downarrow	\downarrow	\downarrow	\downarrow		\downarrow	
Range:	a_{1}	a_{2}	a_{3}	a_{4}	\ldots	a_{n}	Terms of the sequence

An infinite sequence is a function that continues without stopping and whose domain is the set of positive integers. Here are examples of a finite sequence and an infinite sequence.

Finite sequence: $\quad 2,4,6,8 \quad$ Infinite sequence: $2,4,6,8, \ldots$
A sequence can be specified by an equation, or rule. For example, both sequences above can be described by the rule $a_{n}=2 n$ or $f(n)=2 n$.

Notes:
\qquad

8.1 Notetaking with Vocabulary (continued)

Series and Summation Notation

When the terms of a sequence are added together, the resulting expression is a series. A series can be finite or infinite.

Finite series: $2+4+6+8$

Infinite series: $2+4+6+8+\cdots$

You can use summation notation to write a series. For example, the two series above can be written in summation notation as follows:

Finite series: $\quad 2+4+6+8=\sum_{i=1}^{4} 2 i$

Infinite series: $2+4+6+8+\cdots=\sum_{i=1}^{\infty} 2 i$

For both series, the index of summation is i and the lower limit of summation is 1 . The upper limit of summation is 4 for the finite series and ∞ (infinity) for the infinite series. Summation notation is also called sigma notation because it uses the uppercase Greek letter sigma, written \sum.

Notes:

Formulas for Special Series

Sum of n terms of $1: \quad \sum_{i=1}^{n} 1=n$
Sum of first \boldsymbol{n} positive integers: $\quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Sum of squares of first \boldsymbol{n} positive integers: $\quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
Notes:
\qquad
\qquad

8.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, write the first six terms of the sequence.

1. $a_{n}=n^{3}-1$
2. $f(n)=(-2)^{n-1}$

In Exercises 3 and 4, describe the pattern, write the next term, and write a rule for the nth term of the sequence.
3. $-3,-1,1,3, \ldots$
4. $\frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \frac{8}{5}, \ldots$
5. Write the series $-1+4-9+16-25+\cdots$ using summation notation.

In Exercises 6 and 7, find the sum.
6. $\sum_{n=2}^{5} \frac{n}{n-1}$
7. $\sum_{i=1}^{18} i^{2}$

