\qquad

Adding and Subtracting Rational Expressions

For use with Exploration 7.4
Essential Question How can you determine the domain of the sum or difference of two rational expressions?

1 EXPLORATION: Adding and Subtracting Rational Expressions
Work with a partner. Find the sum or difference of the two rational expressions. Then match the sum or difference with its domain. Explain your reasoning.

Sum or Difference

a. $\frac{1}{x-1}+\frac{3}{x-1}=$
b. $\frac{1}{x-1}+\frac{1}{x}=$
c. $\frac{1}{x-2}+\frac{1}{2-x}=$
d. $\frac{1}{x-1}+\frac{-1}{x+1}=$
e. $\frac{x}{x+2}-\frac{x+1}{2+x}=$
f. $\frac{x}{x-2}-\frac{x+1}{x}=$
g. $\frac{x}{x+2}-\frac{x}{x-1}=$
h. $\frac{x+2}{x}-\frac{x+1}{x}=$
D. all real numbers except 0
G. all real numbers except 2

Domain
A. all real numbers except -2
B. all real numbers except -1 and 1
C. all real numbers except 1
E. all real numbers except -2 and 1
F. all real numbers except 0 and 1
H. all real numbers except 0 and 2
\qquad
7.4 Adding and Subtracting Rational Expressions (continued)

2 EXPLORATION: Writing a Sum or Difference
Work with a partner. Write a sum or difference of rational expressions that has the given domain. Justify your answer.
a. all real numbers except -1
b. all real numbers except -1 and 3
c. all real numbers except $-1,0$, and 3

Communicate Your Answer

3. How can you determine the domain of the sum or difference of two rational expressions?
4. Your friend found a sum as follows. Describe and correct the error(s).
$\frac{x}{x+4}+\frac{3}{x-4}=\frac{x+3}{2 x}$
\qquad

Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
complex fraction

Core Concepts

Adding or Subtracting with Like Denominators

Let a, b, and c be expressions with $c \neq 0$.

Addition
$\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$

Subtraction

$\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$

Notes:

Adding or Subtracting with Unlike Denominators

Let a, b, c, and d be expressions with $c \neq 0$ and $d \neq 0$.

Addition
$\frac{a}{c}+\frac{b}{d}=\frac{a d}{c d}+\frac{b c}{c d}=\frac{a d+b c}{c d}$

Subtraction

$\frac{a}{c}-\frac{b}{d}=\frac{a d}{c d}-\frac{b c}{c d}=\frac{a d-b c}{c d}$

Notes:

\qquad
\qquad
7.4 Notetaking with Vocabulary (continued)

Simplifying Complex Fractions

Method 1 If necessary, simplify the numerator and denominator by writing each as a single fraction. Then divide by multiplying the numerator by the reciprocal of the denominator.

Method 2 Multiply the numerator and the denominator by the LCD of every fraction in the numerator and denominator. Then simplify.
Notes:

Extra Practice

In Exercises 1-4, find the sum or difference.

1. $\frac{1}{x-1}-\frac{5}{x-1}$
2. $\frac{4 x}{3 x-5}+\frac{x}{3 x-5}$
3. $\frac{6 x}{x+4}+\frac{24}{x+4}$
4. $\frac{2 x^{2}}{x-7}-\frac{14 x}{x-7}$
\qquad

7.4 Notetaking with Vocabulary (continued)

In Exercises 5-7, find the least common multiple of the expressions.
5. $9 x^{3}, 3 x^{2}-21 x$
6. $x+5,2 x^{2}+11 x+5$
7. $x^{2}+5 x+6, x^{2}-3 x-18$

In Exercises 8-11, find the sum or the difference.
8. $\frac{3}{2 x}+\frac{11}{5 x}$
9. $\frac{15}{x-2}+\frac{3}{x+8}$
10. $\frac{3 x}{2 x+1}+\frac{10}{2 x^{2}-5 x-3}$
11. $\frac{x}{x-7}-\frac{2}{x+1}-\frac{8 x}{x^{2}-6 x-7}$

In Exercises 12 and 13, simplify the complex fraction.
12. $\frac{\frac{x}{10}-3}{5+\frac{1}{x}}$
13. $\frac{\frac{12}{x^{2}-7 x-44}}{\frac{2}{x-11}+\frac{1}{x+4}}$

