7.2 Graphing Rational Functions For use with Exploration 7.2

Essential Question What are some of the characteristics of the graph of a rational function?

The parent function for rational functions with a linear numerator and a linear denominator is

$$f(x) = \frac{1}{x}$$
. Parent function

The graph of this function, shown at the right, is a *hyperbola*.

EXPLORATION: Identifying Graphs of Rational Functions

Work with a partner. Each function is a transformation of the graph of the parent function $f(x) = \frac{1}{x}$. Match the function with its graph. Explain your reasoning. Then describe the transformation.

a.
$$g(x) = \frac{1}{x-1}$$
 b. $g(x) = \frac{-1}{x-1}$ **c.** $g(x) = \frac{x+1}{x-1}$

d.
$$g(x) = \frac{x-2}{x+1}$$
 e. $g(x) = \frac{x}{x+2}$ **f.** $g(x) = \frac{-x}{x+2}$

7.2 Graphing Rational Functions (continued)

Communicate Your Answer

- 2. What are some of the characteristics of the graph of a rational function?
- 3. Determine the intercepts, asymptotes, domain, and range of the rational function

$$g(x)=\frac{x-a}{x-b}.$$

7.2 Notetaking with Vocabulary For use after Lesson 7.2

In your own words, write the meaning of each vocabulary term. rational function

Core Concepts

Parent Function for Simple Rational Functions

The graph of the parent function $f(x) = \frac{1}{x}$ is a *hyperbola*,

which consists of two symmetrical parts called branches. The domain and range are all nonzero real numbers.

Any function of the form $g(x) = \frac{a}{x}(a \neq 0)$ has the same asymptotes, domain, and range as the function $f(x) = \frac{1}{x}$.

Notes:

vertical – asympto x = 0		f(x)	$=\frac{1}{x}$
4			
		2	4 x
	\mathbf{h}	horizontal	
	\uparrow	asymptote	
	+	$-v = 0^{-1}$	
	\square		
	*		

7.2 Notetaking with Vocabulary (continued)

Graphing Translations of Simple Rational Functions

To graph a rational function of the form $y = \frac{a}{x - h} + k$, follow these steps:

Step 1 Draw the asymptotes x = h and y = k.

- **Step 2** Plot points to the left and to the right of the vertical asymptote.
- **Step 3** Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

Notes:

Extra Practice

In Exercises 1 and 2, graph the function. Compare the graph with the graph of $f(x) = \frac{1}{x}$.

1.
$$g(x) = \frac{0.25}{x}$$

2.
$$h(x) = \frac{-2}{x}$$

7.2

3. $k(x) = \frac{1}{x-3} + 5$ **4.** $m(x) = \frac{-3}{x} - 4$

In Exercises 3 and 4, graph the function. State the domain and range.

In Exercises 5 and 6, rewrite the function in the form $g(x) = \frac{a}{x - h} + k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x) = \frac{a}{x}.$

5.
$$g(x) = \frac{x+2}{x-5}$$

6. $g(x) = \frac{2x+8}{3x-12}$

