6.7

Modeling with Exponential and Logarithmic Functions For use with Exploration 6.7

Essential Question How can you recognize polynomial, exponential, and logarithmic models?

EXPLORATION: Recognizing Different Types of Models

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Match each type of model with the appropriate scatter plot. Use a regression program to find a model that fits the scatter plot.

- a. linear (positive slope) b. linear (negative slope) c. quadratic
- d. cubic

e. exponential

f. logarithmic

184 Algebra 2 Student Journal

EXPLORATION: Exploring Gaussian and Logistic Models

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Two common types of functions that are related to exponential functions are given. Use a graphing calculator to graph each function. Then determine the domain, range, intercept, and asymptote(s) of the function.

a. Gaussian Function: $f(x) = e^{-x^2}$ **b.** Logistic Function: $f(x) = \frac{1}{1 + e^{-x}}$

Communicate Your Answer

- 3. How can you recognize polynomial, exponential, and logarithmic models?
- **4.** Use the Internet or some other reference to find real-life data that can be modeled using one of the types given in Exploration 1. Create a table and a scatter plot of the data. Then use a regression program to find a model that fits the data.

6.7 Notetaking with Vocabulary For use after Lesson 6.7

In your own words, write the meaning of each vocabulary term.

finite differences

common ratio

point-slope form

Notes:

6.7 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, determine the type of function represented by the table. Explain your reasoning.

1.	x	6	7	8	9	10	11
	у	34	47	62	79	98	119

2.	x	-5	-3	-1	1	3	5
	у	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{9}{5}$	$\frac{27}{5}$	$\frac{81}{5}$	$\frac{243}{5}$

In Exercises 3–6, write an exponential function $y = ab^{X}$ whose graph passes through the given points.

3. (1,	,12), (3,108)	4. ((-1, 2)	, (3, 3	2)
---------------	---------------	-------------	---------	---------	----

5. (2,9), (4,324) **6.** (-2, 2), (1, 0.25)

6.7 Notetaking with Vocabulary (continued)

7. An Olympic swimmer starts selling a new type of goggles. The table shows the number *y* of goggles sold during a 6-month period.

Months, <i>x</i>	1	2	3	4	5	6
Goggles sold, y	28	47	64	79	97	107

a. Create a scatterplot of the data.

b. Create a scatterplot of the data pairs $(x, \ln y)$ to show that an exponential model should be a good fit for the original data pairs (x, y). Write a function that models the data.

- **c.** Use a graphing calculator to write an exponential model for the data.
- **d.** Use each model to predict the number of goggles sold after 1 year.