\qquad
6.7

Modeling with Exponential and Logarithmic Functions
For use with Exploration 6.7

Essential Question How can you recognize polynomial, exponential, and logarithmic models?

1 EXPLORATION: Recognizing Different Types of Models

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Match each type of model with the appropriate scatter plot. Use a regression program to find a model that fits the scatter plot.
a. linear (positive slope)
b. linear (negative slope)
c. quadratic
d. cubic
e. exponential
f. logarithmic
A.

B.

c.

D.

E.

F.

\qquad

6.7 Modeling with Exponential and Logarithmic Functions (continued)

2 EXPLORATION: Exploring Gaussian and Logistic Models

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Two common types of functions that are related to exponential functions are given. Use a graphing calculator to graph each function. Then determine the domain, range, intercept, and asymptote(s) of the function.
a. Gaussian Function: $f(x)=e^{-x^{2}}$
b. Logistic Function: $f(x)=\frac{1}{1+e^{-x}}$

Communicate Your Answer

3. How can you recognize polynomial, exponential, and logarithmic models?
4. Use the Internet or some other reference to find real-life data that can be modeled using one of the types given in Exploration 1. Create a table and a scatter plot of the data. Then use a regression program to find a model that fits the data.

\qquad
6.7

Notetaking with Vocabulary

For use after Lesson 6.7
In your own words, write the meaning of each vocabulary term.
finite differences
common ratio
point-slope form

Notes:
\qquad
\qquad

6.7 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, determine the type of function represented by the table.

Explain your reasoning.

1.

\boldsymbol{x}	6	7	8	9	10	11
\boldsymbol{y}	34	47	62	79	98	119

2. | \boldsymbol{x} | -5 | -3 | -1 | 1 | 3 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{y} | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{9}{5}$ | $\frac{27}{5}$ | $\frac{81}{5}$ | $\frac{243}{5}$ |

In Exercises 3-6, write an exponential function $y=a b^{X}$ whose graph passes through the given points.
3. $(1,12),(3,108)$
4. $(-1,2),(3,32)$
5. $(2,9),(4,324)$
6. $(-2,2),(1,0.25)$
\qquad
\qquad

6.7 Notetaking with Vocabulary (continued)

7. An Olympic swimmer starts selling a new type of goggles. The table shows the number y of goggles sold during a 6 -month period.

Months, \boldsymbol{x}	1	2	3	4	5	6
Goggles sold, \boldsymbol{y}	28	47	64	79	97	107

a. Create a scatterplot of the data.

b. Create a scatterplot of the data pairs $(x, \ln y)$ to show that an exponential model should be a good fit for the original data pairs (x, y). Write a function that models the data.

c. Use a graphing calculator to write an exponential model for the data.
d. Use each model to predict the number of goggles sold after 1 year.

