\qquad

6.5
 Properties of Logarithms

 For use with Exploration 6.5

 For use with Exploration 6.5}Essential Question How can you use properties of exponents to derive properties of logarithms?

Let $\quad x=\log _{b} m \quad$ and $\quad y=\log _{b} n$.
The corresponding exponential forms of these two equations are

$$
b^{x}=m \quad \text { and } \quad b^{y}=n .
$$

1 EXPLORATION: Product Property of Logarithms
Work with a partner. To derive the Product Property, multiply m and n to obtain

$$
m n=b^{x} b^{y}=b^{x+y} .
$$

The corresponding logarithmic form of $m n=b^{x+y}$ is $\log _{b} m n=x+y$. So,
$\log _{b} m n=$ \qquad .

Product Property of Logarithms

2 EXPLORATION: Quotient Property of Logarithms
Work with a partner. To derive the Quotient Property, divide m by n to obtain

$$
\frac{m}{n}=\frac{b^{x}}{b^{y}}=b^{x-y} .
$$

The corresponding logarithmic form of $\frac{m}{n}=b^{x-y}$ is $\log _{b} \frac{m}{n}=x-y$. So,

$$
\log _{b} \frac{m}{n}=
$$

\qquad .

3 EXPLORATION: Power Property of Logarithms

Work with a partner. To derive the Power Property, substitute b^{x} for m in the expression $\log _{b} m^{n}$, as follows.

$$
\begin{aligned}
\log _{b} m^{n} & =\log _{b}\left(\boldsymbol{b}^{x}\right)^{n} & & \text { Substitute } b^{x} \text { for } m . \\
& =\log _{b} b^{n x} & & \text { Power of a Power Property of Exponents } \\
& =n x & & \text { Inverse Property of Logarithms }
\end{aligned}
$$

\qquad

6.5 Properties of Logarithms (continued)

3 EXPLORATION: Power Property of Logarithms (continued)
So, substituting $\log _{b} m$ for x, you have
$\log _{b} m^{n}=$ \qquad .

Power Property of Logarithms

Communicate Your Answer

4. How can you use properties of exponents to derive properties of logarithms?
5. Use the properties of logarithms that you derived in Explorations $1-3$ to evaluate each logarithmic expression.
a. $\log _{4} 16^{3}$
b. $\log _{3} 81^{-3}$
c. $\ln e^{2}+\ln e^{5}$
d. $2 \ln e^{6}-\ln e^{5}$
e. $\log _{5} 75-\log _{5} 3$
f. $\log _{4} 2+\log _{4} 32$
\qquad
\qquad

6.5
 Notetaking with Vocabulary
 For use after Lesson 6.5

In your own words, write the meaning of each vocabulary term.
base
properties of exponents

Core Concepts

Properties of Logarithms

Let b, m, and n be positive real numbers with $b \neq 1$.
Product Property $\quad \log _{b} m n=\log _{b} m+\log _{b} n$

Quotient Property $\quad \log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
Power Property $\quad \log _{b} m^{n}=n \log _{b} m$
Notes:

Change-of-Base Formula

If a, b, and c are positive real numbers with $b \neq 1$ and $c \neq 1$, then

$$
\log _{c} a=\frac{\log _{b} a}{\log _{b} c} .
$$

In particular, $\log _{c} a=\frac{\log a}{\log c}$ and $\log _{c} a=\frac{\ln a}{\ln c}$.
Notes:
\qquad
\qquad

6.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-4, use $\log _{2} 5 \approx 2.322$ and $\log _{2} 12 \approx 3.585$ to evaluate the logarithm.

1. $\log _{2} 60$
2. $\log _{2} \frac{1}{144}$
3. $\log _{2} \frac{12}{25}$
4. $\log _{2} 720$

In Exercises 5-8, expand the logarithmic expression.
5. $\log 10 x$
6. $\ln 2 x^{6}$
7. $\log _{3} \frac{x^{4}}{3 y^{3}}$
8. $\ln \sqrt[4]{3 y^{2}}$

In Exercises 9-13, condense the logarithmic expression.
9. $\log _{2} 3+\log _{2} 8$
10. $\log _{5} 4-2 \log _{5} 5$
11. $3 \ln 6 x+\ln 4 y$
12. $\log _{2} 625-\log _{2} 125+\frac{1}{3} \log _{2} 27$
13. $-\log _{6} 6-\log _{6} 2 y+2 \log _{6} 3 x$
\qquad

6.5 Notetaking with Vocabulary (continued)

In Exercises 14-17, use the change-of-base formula to evaluate the logarithm.

14. $\log _{3} 17$
15. $\log _{9} 294$
16. $\log _{7} \frac{4}{9}$
17. $\log _{6} \frac{1}{10}$
18. For a sound with intensity I (in watts per square meter), the loudness $L(I)$ of the sound (in decibels) is given by the function $L(I)=10 \log \frac{I}{I_{0}}$, where I_{0} is the intensity of a barely audible sound (about 10^{-12} watts per square meter). The intensity of the sound of a certain children's television show is half the intensity of the adult show that is on before it. By how many decibels does the loudness decrease?
19. Hick's Law states that given n equally probable choices, such as choices on a menu, the average human's reaction time T (in seconds) required to choose from those choices is approximately $T=a+b \bullet \log _{2}(n+1)$ where a and b are constants. If $a=4$ and $b=1$, how much longer would it take a customer to choose what to eat from a menu of 40 items than from a menu of 10 items?
