\qquad

6.3
 Logarithms and Logarithmic Functions
 For use with Exploration 6.3

Essential Question What are some of the characteristics of the graph of a logarithmic function?
Every exponential function of the form $f(x)=b^{x}$, where b is a positive real number other than 1 , has an inverse function that you can denote by $g(x)=\log _{b} x$. This inverse function is called a logarithmic function with base b.

1 EXPLORATION: Rewriting Exponential Equations

Work with a partner. Find the value of x in each exponential equation. Explain your reasoning. Then use the value of x to rewrite the exponential equation in its equivalent logarithmic form, $x=\log _{b} y$.
a. $2^{x}=8$
b. $3^{x}=9$
c. $4^{x}=2$
d. $5^{x}=1$
e. $5^{x}=\frac{1}{5}$
f. $8^{x}=4$

2 EXPLORATION: Graphing Exponential and Logarithmic Functions
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Complete each table for the given exponential function. Use the results to complete the table for the given logarithmic function. Explain your reasoning. Then sketch the graphs of f and g in the same coordinate plane.
a.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\mathbf{2}^{\boldsymbol{x}}$					

\boldsymbol{x}					
$\boldsymbol{g}(\boldsymbol{x})=\log _{2} \boldsymbol{x}$	-2	-1	0	1	2

\qquad
\qquad

6.3 Logarithms and Logarithmic Functions (continued)

2 EXPLORATION: Graphing Exponential and Logarithmic Functions (continued)
b.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})=\mathbf{1 0}^{\boldsymbol{x}}$					

\boldsymbol{x}					
$\boldsymbol{g}(\boldsymbol{x})=\log _{10} \boldsymbol{x}$	-2	-1	0	1	2

3 EXPLORATION: Characteristics of Graphs of Logarithmic Functions
Work with a partner. Use the graphs you sketched in Exploration 2 to determine the domain, range, x-intercept, and asymptote of the graph of $g(x)=\log _{b} x$, where b is a positive real number other than 1. Explain your reasoning.

Communicate Your Answer

4. What are some of the characteristics of the graph of a logarithmic function?
5. How can you use the graph of an exponential function to obtain the graph of a logarithmic function?
\qquad

6.3
 Notetaking with Vocabulary
 For use after Lesson 6.3

In your own words, write the meaning of each vocabulary term.
logarithm of y with base b function
common logarithm
natural logarithm

Core Concepts

Definition of Logarithm with Base b

Let b and y be positive real numbers with $b \neq 1$. The logarithm of \boldsymbol{y} with base \boldsymbol{b} is denoted by $\log _{b} y$ and is defined as

$$
\log _{b} y=x \quad \text { if and only if } \quad b^{x}=y .
$$

The expression $\log _{b} y$ is read as "log base b of y."

Notes:

\qquad

6.3 Notetaking with Vocabulary (continued)

Parent Graphs for Logarithmic Functions

The graph of $f(x)=\log _{b} x$ is shown below for $b>1$ and for $0<b<1$.
Because $f(x)=\log _{b} x$ and $g(x)=b^{x}$ are inverse functions, the graph of $f(x)=\log _{b} x$ is the reflection of the graph of $g(x)=b^{x}$ in the line $y=x$.

Graph of $f(x)=\log _{b} x$ for $b>1 \quad$ Graph of $f(x)=\log _{b} x$ for $0<b<1$

Note that the y-axis is a vertical asymptote of the graph of $f(x)=\log _{b} x$. The domain of $f(x)=\log _{b} x$ is $x>0$, and the range is all real numbers.

Notes:

Extra Practice

In Exercises 1-4, rewrite the equation in exponential form.

1. $\log _{10} 1000=3$
2. $\log _{5} \frac{1}{25}=-2$
3. $\log _{10} 1=0$
4. $\log _{1 / 4} 64=-3$
\qquad
\qquad
6.3 Notetaking with Vocabulary (continued)

In Exercises 5-8, rewrite the equation in logarithmic form.
5. $12^{2}=144$
6. $20^{-1}=\frac{1}{20}$
7. $216^{1 / 3}=6$
8. $4^{0}=1$

In Exercises 9-12, evaluate the logarithm.
9. $\log _{4} 64$
10. $\log _{1 / 8} 1$
11. $\log _{2} \frac{1}{32}$
12. $\log _{1 / 25} \frac{1}{5}$

In Exercises 13 and 14, simplify the expression.
13. $13^{\log _{13} 6}$
14. $\ln e^{x^{3}}$

In Exercises 15 and 16, find the inverse of the function.
15. $y=15^{x}+10$
16. $y=\ln (2 x)-8$

In Exercises 17 and 18, graph the function. Determine the asymptote of the function.
17. $y=\log _{2}(x+1)$

18. $y=\log _{1 / 2} x-4$

