5.2

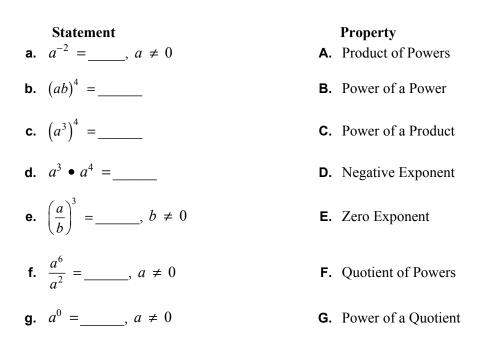
# **Properties of Rational Exponents and Radicals** For use with Exploration 5.2

**Essential Question** How can you use properties of exponents to simplify products and quotients of radicals?



## **EXPLORATION:** Reviewing Properties of Exponents

Work with a partner. Let *a* and *b* be real numbers. Use the properties of exponents to complete each statement. Then match each completed statement with the property it illustrates.



### **EXPLORATION:** Simplifying Expressions with Rational Exponents

### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

**Work with a partner.** Show that you can apply the properties of integer exponents to rational exponents by simplifying each expression. Use a calculator to check your answers.

**a.**  $5^{2/3} \bullet 5^{4/3}$  **b.**  $3^{1/5} \bullet 3^{4/5}$  **c.**  $(4^{2/3})^3$ 

**d.** 
$$(10^{1/2})^4$$
 **e.**  $\frac{8^{5/2}}{8^{1/2}}$  **f.**  $\frac{7^{2/3}}{7^{5/3}}$ 

# 5.2 Properties of Rational Exponents and Radicals (continued)

### **3 EXPLORATION:** Simplifying Products and Quotients of Radicals

### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

**Work with a partner.** Use the properties of exponents to write each expression as a single radical. Then evaluate each expression. Use a calculator to check your answers.

**a.** 
$$\sqrt{3} \cdot \sqrt{12}$$
 **b.**  $\sqrt[3]{5} \cdot \sqrt[3]{25}$  **c.**  $\sqrt[4]{27} \cdot \sqrt[4]{3}$ 

**d.** 
$$\frac{\sqrt{98}}{\sqrt{2}}$$
 **e.**  $\frac{\sqrt[4]{4}}{\sqrt[4]{1024}}$  **f.**  $\frac{\sqrt[3]{625}}{\sqrt[3]{5}}$ 

## **Communicate Your Answer**

- **4.** How can you use properties of exponents to simplify products and quotients of radicals?
- 5. Simplify each expression.

**a.** 
$$\sqrt{27} \bullet \sqrt{6}$$
 **b.**  $\frac{\sqrt[3]{240}}{\sqrt[3]{15}}$  **c.**  $(5^{1/2} \bullet 16^{1/4})^2$ 

# **5.2** Notetaking with Vocabulary For use after Lesson 5.2

In your own words, write the meaning of each vocabulary term.

simplest form of a radical

conjugate

like radicals

# Core Concepts

## **Properties of Rational Exponents**

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers, such that the quantities in each property are real numbers.

| Property Name       | Definition                                               | Example                                                                      |
|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------|
| Product of Powers   | $a^m \bullet a^n = a^{m+n}$                              | $5^{1/2} \bullet 5^{3/2} = 5^{(1/2+3/2)} = 5^2 = 25$                         |
| Power of a Power    | $(a^m)^n = a^{mn}$                                       | $(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$                                |
| Power of a Product  | $(ab)^m = a^m b^m$                                       | $(16 \bullet 9)^{1/2} = 16^{1/2} \bullet 9^{1/2} = 4 \bullet 3 = 12$         |
| Negative Exponent   | $a^{-m} = \frac{1}{a^m}, a \neq 0$                       | $36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$                               |
| Zero Exponent       | $a^0 = 1, a \neq 0$                                      | $213^0 = 1$                                                                  |
| Quotient of Powers  | $\frac{a^m}{a^n}=a^{m-n}, a\neq 0$                       | $\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$                       |
| Power of a Quotient | $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$ | $\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$ |

### Notes:

# 5.2 Notetaking with Vocabulary (continued)

### **Properties of Radicals**

Let *a* and *b* be real numbers and let *n* be an integer greater than 1.

| Property Name     | Definition                                                          | Example                                                                          |
|-------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Product Property  | $\sqrt[n]{a \bullet b} = \sqrt[n]{a} \bullet \sqrt[n]{b}$           | $\sqrt[3]{4} \cdot \sqrt[3]{2} = \sqrt[3]{8} = 2$                                |
| Quotient Property | $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$ | $\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$ |

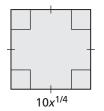
Notes:

# **Extra Practice**

In Exercises 1–4, use the properties of rational exponents to simplify the expression.

**1.** 
$$(2^3 \bullet 3^3)^{-1/3}$$
 **2.**  $\frac{10}{10^{-4/5}}$  **3.**  $\left(\frac{52^5}{4^5}\right)^{1/6}$  **4.**  $\frac{3^{1/3} \bullet 27^{2/3}}{8^{4/3}}$ 

5. Find simplified expressions for the perimeter and area of the given figure.



## 5.2 Notetaking with Vocabulary (continued)

In Exercises 6–8, use the properties of radicals to simplify the expression.

6. 
$$\sqrt[6]{25} \cdot \sqrt[6]{625}$$
 7.  $\frac{\sqrt{343}}{\sqrt{7}}$  8.  $\frac{\sqrt[3]{25} \cdot \sqrt[3]{10}}{\sqrt[3]{2}}$ 

#### In Exercises 9–12, write the expression in simplest form.

**9.** 
$$\sqrt[7]{384}$$
 **10.**  $\sqrt[3]{\frac{5}{9}}$ 

**11.** 
$$\frac{1}{4-\sqrt{5}}$$
 **12.**  $\frac{\sqrt{2}}{1+\sqrt{6}}$ 

In Exercises 13–16, write the expression in simplest form. Assume all variables are positive.

**13.**  $-2\sqrt[3]{5} + 40\sqrt[3]{5}$  **14.**  $2(1250)^{1/4} - 5(32)^{1/4}$ 

**15.** 
$$\frac{\sqrt[4]{x} \cdot \sqrt[4]{81x}}{\sqrt[4]{16x^{36}}}$$
 **16.**  $\frac{21(x^{-3/2})(\sqrt{y})(z^{5/2})}{7^{-1}\sqrt{x}(y^{-1/2})z}$