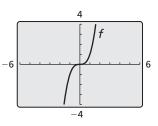
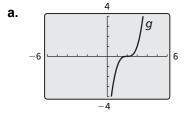
1

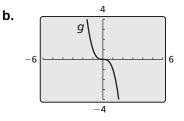
4

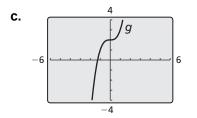
Transformations of Polynomial Functions For use with Exploration 4.7

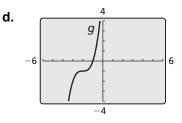
Essential Question How can you transform the graph of a polynomial function?


EXPLORATION: Transforming the Graph of the Cubic Function

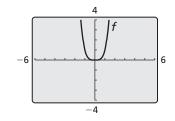

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.


Work with a partner. The graph of the cubic function


$$f(x) = x^3$$


is shown. The graph of each cubic function g represents a transformation of the graph of f. Write a rule for g. Use a graphing calculator to verify your answers.

4.7 Transformations of Polynomial Functions (continued)

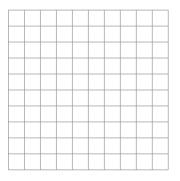

EXPLORATION: Transforming the Graph of the Quartic Function


Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. The graph of the quartic function

$$f(x) = x^4$$

is shown. The graph of each quartic function g represents a transformation of the graph of f. Write a rule for g. Use a graphing calculator to verify your answers.



Communicate Your Answer

3. How can you transform the graph of a polynomial function?

4. Describe the transformation of $f(x) = x^4$ represented by $g(x) = (x + 1)^4 + 3$. Then graph g(x).

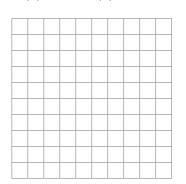
In your own words, write the meaning of each vocabulary term.

polynomial function

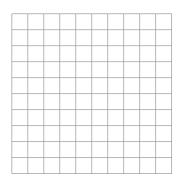
transformations

Core Concepts

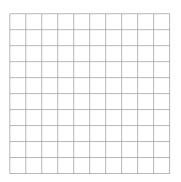
Transformation	f(x) Notation	Examples		
Horizontal Translation	f(x-h)	$g(x) = \left(x - 5\right)^4$	5 units right	
Graph shifts left or right.	J(x = n)	$g(x) = \left(x + 2\right)^4$	2 units left	
Vertical Translation	f(x) + k	$g(x) = x^4 + 1$	1 unit up	
Graph shifts up or down.	<i>J</i> (<i>N</i>) + <i>N</i>	$g(x) = x^4 - 4$	4 units down	
Reflection	f(-x)	$g(x) = \left(-x\right)^4 = x^4$	over <i>y</i> -axis	
Graph flips over <i>x</i> - or <i>y</i> -axis.	-f(x)	$g(x) = -x^4$	over <i>x</i> -axis	
Horizontal Stretch or Shrink		$g(x) = (2x)^4$	shrink by $\frac{1}{2}$	
Graph stretches away from or shrinks toward <i>y</i> -axis	f(ax)	$g(x) = \left(\frac{1}{2}x\right)^4$	stretch by 2	
Vertical Stretch or Shrink		$g(x) = 8x^4$	stretch by 8	
Graph stretches away from or shrinks toward <i>x</i> -axis.	$a \bullet f(x)$	$g(x) = \frac{1}{4}x^4$	shrink by $\frac{1}{4}$	

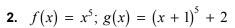

Notes:

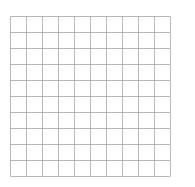
4.7 Notetaking with Vocabulary (continued)

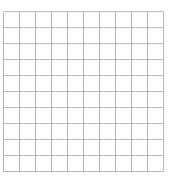

Extra Practice

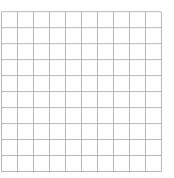
In Exercises 1–6, describe the transformation of f represented by g. Then graph each function.


1. $f(x) = x^4$; $g(x) = x^4 - 9$

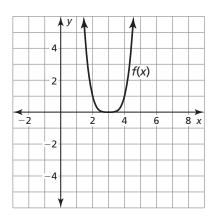



3.
$$f(x) = x^6$$
; $g(x) = -5(x-2)^6$

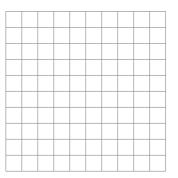

5. $f(x) = x^4$; $g(x) = \frac{1}{8}(-x)^4$



4.
$$f(x) = x^3$$
; $g(x) = \left(\frac{1}{2}x\right)^3 - 4$



6.
$$f(x) = x^5$$
; $g(x) = (x - 10)^5 + 1$


4.7 Notetaking with Vocabulary (continued)

7. Graph the function g(x) = -f(x-3) on the same coordinate plane as f(x).

In Exercises 8 and 9, write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f.

8. $f(x) = x^3 + 8$; g(x) = f(-x) - 9**9.** $f(x) = 2x^5 - x^3 + 1$; g(x) = 5f(x)

In Exercises 10 and 11, write a rule for g that represents the indicated transformations of the graph of f.

- **10.** $f(x) = x^3 6x^2 + 5$; translation 1 unit left, followed by a reflection in the x-axis and a vertical stretch by a factor of 2
- **11.** $f(x) = 3x^4 + x^3 + 3x^2 + 12$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 8 units down, followed by a reflection in the *y*-axis