\qquad

Transformations of Polynomial Functions

For use with Exploration 4.7
Essential Question How can you transform the graph of a polynomial function?

1 EXPLORATION: Transforming the Graph of the Cubic Function

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. The graph of the cubic function

$$
f(x)=x^{3}
$$

is shown. The graph of each cubic function g represents a transformation of the graph of f. Write a rule for g. Use a graphing calculator to verify your answers.

a.

b.

c.

d.

\qquad

4.7 Transformations of Polynomial Functions (continued)

2 EXPLORATION: Transforming the Graph of the Quartic Function
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. The graph of the quartic function
$f(x)=x^{4}$
is shown. The graph of each quartic function g represents a transformation of the graph of f. Write a rule for g. Use a graphing calculator to verify your answers.

a.

b.

Communicate Your Answer

3. How can you transform the graph of a polynomial function?
4. Describe the transformation of $f(x)=x^{4}$ represented by $g(x)=(x+1)^{4}+3$. Then graph $g(x)$.

\qquad
\qquad

4.7
 Notetaking with Vocabulary
 For use after Lesson 4.7

In your own words, write the meaning of each vocabulary term. polynomial function
transformations

Core Concepts

Transformation	$f(x)$ Notation	Examples	
Horizontal Translation Graph shifts left or right.	$f(x-h)$	$\begin{aligned} & g(x)=(x-5)^{4} \\ & g(x)=(x+2)^{4} \end{aligned}$	5 units right 2 units left
Vertical Translation Graph shifts up or down.	$f(x)+k$	$\begin{aligned} & g(x)=x^{4}+1 \\ & g(x)=x^{4}-4 \end{aligned}$	1 unit up 4 units down
Reflection Graph flips over x - or y-axis.	$\begin{aligned} & f(-x) \\ & -f(x) \end{aligned}$	$\begin{aligned} & g(x)=(-x)^{4}=x^{4} \\ & g(x)=-x^{4} \end{aligned}$	over y-axis over x-axis
Horizontal Stretch or Shrink Graph stretches away from or shrinks toward y-axis	$f(a x)$	$\begin{aligned} & g(x)=(2 x)^{4} \\ & g(x)=\left(\frac{1}{2} x\right)^{4} \end{aligned}$	shrink by $\frac{1}{2}$ stretch by 2
Vertical Stretch or Shrink Graph stretches away from or shrinks toward x-axis.	$a \bullet f(x)$	$\begin{aligned} & g(x)=8 x^{4} \\ & g(x)=\frac{1}{4} x^{4} \end{aligned}$	stretch by 8 shrink by $\frac{1}{4}$

Notes:

\qquad

4.7 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-6, describe the transformation of f represented by g. Then graph each function.

1. $f(x)=x^{4} ; g(x)=x^{4}-9$

2. $f(x)=x^{6} ; g(x)=-5(x-2)^{6}$

3. $f(x)=x^{4} ; g(x)=\frac{1}{8}(-x)^{4}$

4. $f(x)=x^{5} ; g(x)=(x+1)^{5}+2$

5. $f(x)=x^{3} ; g(x)=\left(\frac{1}{2} x\right)^{3}-4$

6. $f(x)=x^{5} ; g(x)=(x-10)^{5}+1$

\qquad
\qquad

4.7 Notetaking with Vocabulary (continued)

7. Graph the function $g(x)=-f(x-3)$ on the same coordinate plane as $f(x)$.

In Exercises 8 and 9, write a rule for g and then graph each function. Describe the graph of \boldsymbol{g} as a transformation of the graph of \boldsymbol{f}.
8. $f(x)=x^{3}+8 ; g(x)=f(-x)-9$
9. $f(x)=2 x^{5}-x^{3}+1 ; g(x)=5 f(x)$

In Exercises 10 and 11, write a rule for g that represents the indicated

 transformations of the graph of \boldsymbol{f}.10. $f(x)=x^{3}-6 x^{2}+5$; translation 1 unit left, followed by a reflection in the x-axis and a vertical stretch by a factor of 2
11. $f(x)=3 x^{4}+x^{3}+3 x^{2}+12$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 8 units down, followed by a reflection in the y-axis
