1

4.6

The Fundamental Theorem of Algebra For use with Exploration 4.6

Essential Question How can you determine whether a polynomial equation has imaginary solutions?

EXPLORATION: Cubic Equations and Imaginary Solutions

Work with a partner. Match each cubic polynomial equation with the graph of its related polynomial function. Then find *all* solutions. Make a conjecture about how you can use a graph or table of values to determine the number and types of solutions of a cubic polynomial equation.

a. $x^3 - 3x^2 + x + 5 = 0$	b. $x^3 - 2x^2 - x + 2 = 0$
c. $x^3 - x^2 - 4x + 4 = 0$	d. $x^3 + 5x^2 + 8x + 6 = 0$
e. $x^3 - 3x^2 + x - 3 = 0$	f. $x^3 - 3x^2 + 2x = 0$

2

4.6 The Fundamental Theorem of Algebra (continued)

EXPLORATION: Quartic Equations and Imaginary Solutions

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use the graph of the related quartic function, or a table of values, to determine whether each quartic equation has imaginary solutions. Explain your reasoning. Then find *all* solutions.

a.
$$x^4 - 2x^3 - x^2 + 2x = 0$$
 b. $x^4 - 1 = 0$

c. $x^4 + x^3 - x - 1 = 0$ **d.** $x^4 - 3x^3 + x^2 + 3x - 2 = 0$

Communicate Your Answer

- 3. How can you determine whether a polynomial equation has imaginary solutions?
- **4.** Is it possible for a cubic equation to have three imaginary solutions? Explain your reasoning.

4.6 Notetaking with Vocabulary For use after Lesson 4.6

In your own words, write the meaning of each vocabulary term.

complex conjugates

Core Concepts

The Fundamental Theorem of Algebra

Theorem	If $f(x)$ is a polynomial of degree <i>n</i> where $n > 0$, then the equation $f(x) = 0$ has at least one solution in the set of complex numbers.
Corollary	If $f(x)$ is a polynomial of degree <i>n</i> where $n > 0$, then the equation $f(x) = 0$ has exactly <i>n</i> solutions provided each solution repeated twice is counted as two solutions, each solution repeated three times is counted as three solutions, and so on.

Notes:

4.6 Notetaking with Vocabulary (continued)

The Complex Conjugates Theorem

If f is a polynomial function with real coefficients, and a + bi is an imaginary zero of f, then a - bi is also a zero of f.

Notes:

Descartes's Rule of Signs

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ be a polynomial function with real coefficients.

- The number of *positive real zeros* of f is equal to the number of changes in sign of the coefficients of f(x) or is less than this by an even number.
- The number of *negative real zeros* of *f* is equal to the number of changes in sign of the coefficients of f(-x) or is less than this by an even number.

Notes:

4.6 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–4, find all zeros of the polynomial function.

1.
$$h(x) = x^4 - 3x^3 + 6x^2 + 2x - 60$$
 2. $f(x) = x^3 - 3x^2 - 15x + 125$

3.
$$g(x) = x^4 - 48x^2 - 49$$

4. $h(x) = -5x^3 + 9x^2 - 18x - 4$

In Exercises 5–8, write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros.

5.
$$-4, 1, 7$$
 6. $10, -\sqrt{5}$

7. 8, 3 - *i* **8.** 0, 2 -
$$\sqrt{2}$$
, 2 + 3*i*