## **Factoring Polynomials**

For use with Exploration 4.4

Essential Question How can you factor a polynomial?

### **EXPLORATION:** Factoring Polynomials

Work with a partner. Match each polynomial equation with the graph of its related polynomial function. Use the x-intercepts of the graph to write each polynomial in factored form. Explain your reasoning.

**a.** 
$$x^2 + 5x + 4 = 0$$

**b.** 
$$x^3 - 2x^2 - x + 2 = 0$$

**c.** 
$$x^3 + x^2 - 2x = 0$$

**d.** 
$$x^3 - x = 0$$

**e.** 
$$x^4 - 5x^2 + 4 = 0$$

**f.** 
$$x^4 - 2x^3 - x^2 + 2x = 0$$

A.



В.



C.



D.



E.



F.



## 4.4 Factoring Polynomials (continued)

## **EXPLORATION:** Factoring Polynomials

**Work with a partner.** Use the *x*-intercepts of the graph of the polynomial function to write each polynomial in factored form. Explain your reasoning. Check your answers by multiplying.

**a.** 
$$f(x) = x^2 - x - 2$$

**b.** 
$$f(x) = x^3 - x^2 - 2x$$

**c.** 
$$f(x) = x^3 - 2x^2 - 3x$$

**d.** 
$$f(x) = x^3 - 3x^2 - x + 3$$

**e.** 
$$f(x) = x^4 + 2x^3 - x^2 - 2x$$

**f.** 
$$f(x) = x^4 - 10x^2 + 9$$

## Communicate Your Answer

3. How can you factor a polynomial?

**4.** What information can you obtain about the graph of a polynomial function written in factored form?

# Notetaking with Vocabulary For use after Lesson 4.4

In your own words, write the meaning of each vocabulary term.

factored completely

factor by grouping

quadratic form

## Core Concepts

#### **Special Factoring Patterns**

#### **Sum of Two Cubes**

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

#### **Difference of Two Cubes**

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

#### Notes:

#### Example

$$64x^{3} + 1 = (4x)^{3} + 1^{3}$$
$$= (4x + 1)(16x^{2} - 4x + 1)$$

#### Example

$$27x^{3} - 8 = (3x)^{3} - 2^{3}$$
$$= (3x - 2)(9x^{2} + 6x + 4)$$

## 4.4 Notetaking with Vocabulary (continued)

#### **The Factor Theorem**

A polynomial f(x) has a factor x - k if and only if f(k) = 0.

#### Notes:

#### **Extra Practice**

In Exercises 1–14, factor the polynomial completely.

1. 
$$20x^3 - 220x^2 + 600x$$

**2.** 
$$m^5 - 81m$$

3. 
$$27a^3 + 8b^3$$

**4.** 
$$5t^6 + 2t^5 - 5t^4 - 2t^3$$

**5.** 
$$y^4 - 13y^2 - 48$$

**6.** 
$$5p^3 + 5p - 5p^2 - 5$$

7. 
$$810k^4 - 160$$

**8.** 
$$a^5 + a^3 - a^2 - 1$$

## 4.4 Notetaking with Vocabulary (continued)

**9.** 
$$2x^6 - 8x^5 - 42x^4$$

**10.** 
$$5z^3 + 5z^2 - 6z - 6$$

**11.** 
$$12x^2 - 22x - 20$$

**12.** 
$$3m^2 - 48m^6$$

**13.** 
$$4x^3 - 4x^2 + x$$

**14.** 
$$5m^4 - 70m^3 + 245m^2$$

In Exercises 15–17, show that the binomial is a factor of the polynomial. Then factor the function completely.

**15.** 
$$f(x) = x^3 - 13x - 12; x + 1$$

**16.** 
$$f(x) = 6x^3 + 8x^2 - 34x - 12; x - 2$$

**17.** 
$$f(x) = 2x^4 - 12x^3 + 6x^2 + 20x$$
;  $x - 5$