\qquad

3.6
 Quadratic Inequalities
 For use with Exploration 3.6

Essential Question How can you solve a quadratic inequality?

1 EXPLORATION: Solving a Quadratic Inequality
Work with a partner. The graphing calculator screen shows the graph of

$$
f(x)=x^{2}+2 x-3
$$

Explain how you can use the graph to solve the inequality

$$
x^{2}+2 x-3 \leq 0
$$

Then solve the inequality.

2 EXPLORATION: Solving Quadratic Inequalities
Work with a partner. Match each inequality with the graph of its related quadratic function on the next page. Then use the graph to solve the inequality.
a. $x^{2}-3 x+2>0$
b. $x^{2}-4 x+3 \leq 0$
c. $x^{2}-2 x-3<0$
d. $x^{2}+x-2 \geq 0$
e. $x^{2}-x-2<0$
f. $x^{2}-4>0$
\qquad

3.6 Quadratic Inequalities (continued)

A.

B.

C.

D.

E.

F.

Communicate Your Answer

3. How can you solve a quadratic inequality?
4. Explain how you can use the graph in Exploration 1 to solve each inequality. Then solve each inequality.
a. $x^{2}+2 x-3>0$
b. $x^{2}+2 x-3<0$
c. $x^{2}+2 x-3 \geq 0$
\qquad

3.6

In your own words, write the meaning of each vocabulary term. quadratic inequality in two variables
quadratic inequality in one variable

Core Concepts

Graphing a Quadratic Inequality in Two Variables

To graph a quadratic inequality in one of the following forms,
$y<a x^{2}+b x+c \quad y>a x^{2}+b x+c$
$y \leq a x^{2}+b x+c \quad y \geq a x^{2}+b x+c$,
follow these steps.
Step 1 Graph the parabola with the equation $y=a x^{2}+b x+c$. Make the parabola dashed for inequalities with $<$ or $>$ and solid for inequalities with \leq or \geq.

Step 2 Test a point (x, y) inside the parabola to determine whether the point is a solution of the inequality.

Step 3 Shade the region inside the parabola if the point from Step 2 is a solution. Shade the region outside the parabola if it is not a solution.

Notes:

\qquad

3.6 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-4, match the graph with its inequality. Explain your reasoning.

3.

A. $y<x^{2}+2 x-8$
B. $y \leq-x^{2}+2 x-8$
C. $y>x^{2}+2 x-8$
D. $y \geq-x^{2}+2 x-8$

In Exercises 5-8, graph the inequality.

5. $y<x^{2}+2$
6. $y \leq-5 x^{2}$

7. $y<4 x^{2}+4 x+1$

8. Accident investigators use the formula $d=0.01875 v^{2}$, where d is the braking distance of a car (in feet) and v is the speed of the car (in miles per hour) to determine how fast a car is going at the time of an accident. For what speeds v would a car leave a tire mark on the road of over 1 foot?
\qquad
\qquad

3.6 Notetaking with Vocabulary (continued)

In Exercises 10-12, graph the system of quadratic inequalities.

10. $y \leq-x^{2}$
$y>-3 x^{2}+3$

11. $y \geq x^{2}+5 x$
$y \geq(x+2)^{2}-1$

12. $y>x^{2}-7 x-8$
$y<-x^{2}+6 x+5$

In Exercises 13-15, solve the inequality algebraically.
13. $16 x^{2}>100$
14. $x^{2} \leq 15 x-34$
15. $-\frac{1}{5} x^{2}+10 x \geq-25$
16. The profit for a hot dog company is given by the equation $y=-0.02 x^{2}+140 x-2500$, where x is the number of hot dogs produced and y is the profit (in dollars). How many hot dogs must be produced so that the company will generate a profit of at least $\$ 150,000$?

