\qquad
\qquad
3.4 Using the Quadratic Formula

Essential Question How can you derive a general formula for solving a quadratic equation?

1 EXPLORATION: Deriving the Quadratic Formula

Work with a partner. Analyze and describe what is done in each step in the development of the Quadratic Formula.

$$
\begin{array}{rlr}
\text { Step } & \text { Justification } \\
a x^{2}+b x+c & =0 \\
a x^{2}+b x & =-c \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} & \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{4 a c}{4 a^{2}+\frac{b^{2}}{4 a^{2}}} \\
\left.x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} \\
x+\frac{b}{2 a} & = \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
x & =-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 \mid a} & \\
\hline \begin{array}{l}
\text { The result is the } \\
\text { Quadratic Formula. } \\
x
\end{array} & \\
\hline
\end{array}
$$

\qquad

3.4 Using the Quadratic Formula (continued)

2 EXPLORATION: Using the Quadratic Formula

Work with a partner. Use the Quadratic Formula to solve each equation.
a. $x^{2}-4 x+3=0$
b. $x^{2}-2 x+2=0$
c. $x^{2}+2 x-3=0$
d. $x^{2}+4 x+4=0$
e. $x^{2}-6 x+10=0$
f. $x^{2}+4 x+6=0$

Communicate Your Answer

3. How can you derive a general formula for solving a quadratic equation?
4. Summarize the following methods you have learned for solving quadratic equations: graphing, using square roots, factoring, completing the square, and using the Quadratic Formula.
\qquad
\qquad

3.4

In your own words, write the meaning of each vocabulary term.
Quadratic Formula
discriminant

Core Concepts

The Quadratic Formula

Let a, b, and c be real numbers such that $a \neq 0$. The solutions of the quadratic
equation $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Notes:

\qquad
3.4 Notetaking with Vocabulary (continued)

Analyzing the Discriminant of $a x^{2}+b x+c=0$

Value of discriminant	$b^{2}-4 a c>0$	$b^{2}-4 a c=0$	$b^{2}-4 a c<0$
Number and type of solutions	Two real solutions	One real solution	Two imaginary solutions
Graph of $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}$			
	Two x-intercepts	One x-intercept	No x-intercept

Notes:

\qquad
\qquad

3.4 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-3, solve the equation using the Quadratic Formula. Use a graphing calculator to check your solution(s).

1. $x^{2}-7 x-18=0$
2. $w^{2}=4 w-1$
3. $-7 z=-4 z^{2}-3$

In Exercises 4-6, find the discriminant of the quadratic equation and describe the number and type of solutions of the equation.
4. $b^{2}+34 b+289=0$
5. $x^{2}=3-8 x$
6. $4 q^{2}+1=3 q$
7. A baseball player hits a foul ball straight up in the air from a height of 4 feet off the ground with an initial velocity of 85 feet per second.
a. Write a quadratic function that represents the height h of the ball t seconds after it hits the bat.
b. When is the ball 110 feet off the ground? Explain your reasoning.
c. The catcher catches the ball 6 feet from the ground. How long is the ball in the air?

