1

3.1

Solving Quadratic Equations

For use with Exploration 3.1

Essential Question How can you use the graph of a quadratic equation to determine the number of real solutions of the equation?

EXPLORATION: Matching a Quadratic Function with Its Graph

Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Determine the number of *x*-intercepts of the graph.

a.
$$f(x) = x^2 - 2x$$

b. $f(x) = x^2 - 2x + 1$
c. $f(x) = x^2 - 2x + 2$

d.
$$f(x) = -x^2 + 2x$$
 e. $f(x) = -x^2 + 2x - 1$ **f.** $f(x) = -x^2 + 2x - 2$

3.1 Solving Quadratic Equations (continued)

EXPLORATION: Solving Quadratic Equations

Work with a partner. Use the results of Exploration 1 to find the real solutions (if any) of each quadratic equation.

a.
$$x^2 - 2x = 0$$
 b. $x^2 - 2x + 1 = 0$ **c.** $x^2 - 2x + 2 = 0$

d.
$$-x^2 + 2x = 0$$
 e. $-x^2 + 2x - 1 = 0$ **f.** $-x^2 + 2x - 2 = 0$

Communicate Your Answer

3. How can you use the graph of a quadratic equation to determine the number of real solutions of the equation?

4. How many real solutions does the quadratic equation $x^2 + 3x + 2 = 0$ have? How do you know? What are the solutions?

In your own words, write the meaning of each vocabulary term.

quadratic equation in one variable

root of an equation

zero of a function

Core Concepts

Solving Quadratic Equations

By graphing	Find the <i>x</i> -intercepts of the related function $y = ax^2 + bx + c.$
Using square roots	Write the equation in the form $u^2 = d$, where <i>u</i> is an algebraic expression, and solve by taking the square root of each side.
By factoring	Write the polynomial equation $ax^2 + bx + c = 0$ in factored form and solve using the Zero-Product Property

Notes:

3.1

Notetaking with Vocabulary (continued)

Zero-Product Property

- Words If the product of two expressions is zero, then one or both of the expressions equal zero.
- **Algebra** If A and B are expressions and AB = 0, then A = 0 or B = 0.

Notes:

Extra Practice

In Exercises 1–3, solve the equation by graphing.

3.	$12x^{2}$	=	5x	+	2
----	-----------	---	----	---	---

In Exercises 4–6, solve the equation using square roots.

5. $(2k+3)^2 - 19 = 81$ **6.** $\frac{1}{7}p^2 = \frac{5}{7}p^2 - 20$ **4.** $t^2 = 400$

Notetaking with Vocabulary (continued) 3.1

In Exercises 7–9, solve the equation by factoring.

7. $0 = x^2 - 12x + 36$ **8.** $x^2 = 14x - 40$ **9.** $5x^2 + 5x - 1 = -x^2 + 4x$

- 10. Which equations have roots that are equivalent to the x-intercepts of the graph shown?
 - **A.** $-2x^2 10x 8 = 0$ y = (x + 1)(x - 4)-2 2 **B.** $x^2 - 3x = 4$ **C.** (x-1)(x+4) = 06
 - **D.** $(x-1)^2 + 4 = 0$
 - **E.** $6x^2 = 18x + 24$
- **11.** A skydiver drops out of an airplane that is flying at an altitude of 4624 feet.
 - **a.** Use the formula $h = -16t^2 + h_0$ to write an equation that gives the skydiver's height h (in feet) during free fall t seconds after the skydiver drops out of the airplane.
 - **b.** It is possible for the skydiver to wait 18 seconds before pulling the parachute cord? Explain.

