$\qquad$

## 2.3 <br> Focus of a Parabola

For use with Exploration 2.3

## Essential Question What is the focus of a parabola?

1 EXPLORATION: Analyzing Satellite Dishes
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Vertical rays enter a satellite dish whose cross section is a parabola. When the rays hit the parabola, they reflect at the same angle at which they entered. (See Ray 1 in the figure.)
a. Draw the reflected rays so that they intersect the $y$-axis.
b. What do the reflected rays have in common?
c. The optimal location for the receiver of the satellite dish is at a point called the focus of the parabola. Determine the location of the focus. Explain why this makes sense in this situation.

$\qquad$

### 2.3 Focus of a Parabola (continued)

## 2 EXPLORATION: Analyzing Spotlights

## Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Beams of light are coming from the bulb in a spotlight, located at the focus of the parabola. When the beams hit the parabola, they reflect at the same angle at which they hit. (See Beam 1 in the figure.) Draw the reflected beams. What do they have in common? Would you consider this to be the optimal result? Explain.


## Communicate Your Answer

3. What is the focus of a parabola?
4. Describe some of the properties of the focus of a parabola.
$\qquad$
$\qquad$

## Notetaking with Vocabulary

For use after Lesson 2.3
In your own words, write the meaning of each vocabulary term.
focus
directrix

## Core Concepts

## Standard Equations of a Parabola with Vertex at the Origin

Vertical axis of symmetry $(x=0)$
Equation: $y=\frac{1}{4 p} x^{2}$
Focus: $(0, p)$
Directrix: $y=-p$

$p>0$

$p<0$

Horizontal axis of symmetry $(y=0)$
Equation: $x=\frac{1}{4 p} y^{2}$
Focus: $(p, 0)$
Directrix: $x=-p$

$p>0$

$p<0$

Notes:
$\qquad$
$\qquad$

### 2.3 Notetaking with Vocabulary (continued)

## Standard Equations of a Parabola with Vertex at (h,k)

Vertical axis of symmetry $(\boldsymbol{x}=\boldsymbol{h})$

Equation: $y=\frac{1}{4 p}(x-h)^{2}+k$

Focus: $(h, k+p)$

Directrix: $y=k-p$



Horizontal axis of symmetry $(\boldsymbol{y}=\boldsymbol{k})$
Equation: $x=\frac{1}{4 p}(y-k)^{2}+h$

Focus: $(h+p, k)$
Directrix: $x=h-p$


Notes:

## Extra Practice

In Exercises 1 and 2, use the Distance Formula to write an equation of the parabola.

1. focus: $(0,-8)$ directrix: $y=8$
2. vertex: $(0,0)$ focus: $(0,1)$
$\qquad$
$\qquad$

### 2.3 Notetaking with Vocabulary (continued)

In Exercises 3-5, identify the focus, directrix, and axis of symmetry of the parabola. Graph the equation.
3. $x^{2}=-2 y$
4. $-5 x+\frac{1}{3} y^{2}=0$
5. $y=-2(x+1)^{2}-3$




## In Exercises 6-8, write an equation of the parabola shown.

6. 


7.

8.

9. The cross section of a parabolic sound reflector at the Olympics has a diameter of 20 inches and is 25 inches deep. Write an equation that represents the cross section of the reflector with its vertex at $(0,0)$ and its focus to the left of the vertex.

